УДК 543:546.799.4:627.157:(268.51+551.313:282.251.1+551.313:282.251.2)

СОДЕРЖАНИЕ ^{239, 240}Ри В ДОННЫХ ОТЛОЖЕНИЯХ КАРСКОГО МОРЯ И ЭСТУАРИЕВ РЕК ОБЬ И ЕНИСЕЙ

А.М. Афиногенов, Ю.А. Сапожников, С.Н. Калмыков, Н.А.Айбулатов*, А.Н. Плишкин*, И.П. Ефимов**

(кафедра радиохимии)

Получены новые данные о содержании ^{239,240}Ри в донных отложениях открытой части Карского моря (0,6 – 11,5 Бк/кг), Обской губы (0,5 – 20,5 Бк/кг) и Енисейского залива (0,8 – 35,5 Бк/кг). В донных осадках из района Енисейского залива содержится больше ^{239,240}Ри, чем в донных осадках, отобранных в открытой части Карского моря и Обской губе, что позволяет в настоящее время считать сток Енисея важным источником поступления Ри в Карское море.

Формирование современной радиационной обстановки в Карском море обусловлено следующими основными факторами [1, 2]:

- 1. Работа Новоземельского ядерного полигона, где с 1956 г. проводили испытания ядерного оружия в атмосфере и под водой, а также более 20 лет (1964 – 1986) осуществляли захоронения твердых радиоактивных отходов (РАО) [1]. В настоящее время можно говорить лишь о потенциальной опасности этих захоронений, поскольку судя по результатам совместных российско-норвежских океанографических экспедиций (1990 – 1994) содержание ^{239,240}Pu в пробах донных осадков, отобранных вблизи захоронений на восточном побережье Новой Земли, соответствует уровню глобальных выпадений (от < 0,1 до 18 Бк/кг [2]). Что касается воздействия на окружающую среду испытанных на Новоземельском полигоне ядерных зарядов, то достаточно уверенно можно говорить об относительно невысоких уровнях загрязнения непосредственно вблизи мест испытаний. Так, например, группой «Гринпис» в октябре 1990 г. на Южном острове возле старой шахты были обнаружены «горячие пятна» (плотность выпадений более 50 Бк/см²). «Пятна» находились в 400 м от шахты, а в 2 км от нее показания приборов упали до фоновых значений [1].
- 2. Затопление у побережья Новой Земли реакторов атомных подводных лодок и аварийного реактора атомного ледокола «Ленин» (9 реакторов без ядерного топлива и 7 в аварийном состоянии с невыгруженным ядерным топливом), а также захоронение твердых РАО в 8 районах у побережья Новой Земли и в Карском море [1]. Содержание ^{238,239,240}Ри в основных местах захоронений оценивается в 13 ТБк, из которых 11 ТБк приходится на залив Цивольки [2].
- 3. Глобальные выпадения, связанные с испытаниями ядерного оружия (плотность выпадений 239,240 Pu для $70-80^{\circ}$ с.ш. оценивается в $0,36\pm0,05$ мКи/км 2 [3], средний уровень удельной активности 239,240 Pu в донных осадках составляет 0,1-10 Бк/кг [4].

- 4. Сбросы радиохимических предприятий Западной Европы, переносимые вокруг скандинавского побережья отрогами течения Гольфстрим.
- 5. Перенос речными системами сбросов радиохимических предприятий или вымывание радионуклидов с загрязненных территорий.
 - 6. Чернобыльские выпадения.

С учетом того, что около трети всех поступлений пресной воды в арктические моря приходится на сток рек Обь и Енисей (через Карское море), особое значение приобретает оценка влияния на общее радиоактивное загрязнение Карского моря радионуклидов, поступающих с выносом этих рек, в бассейнах которых осуществлялся сброс РАО, обусловленный функционированием радиохимических предприятий и радиационными инцидентами.

В ходе 49-го рейса НИС «Дмитрий Менделеев» (1993) в этом регионе были отобраны пробы донных осадков. Их анализ на содержание ^{239,240}Рu был проведен в лаборатории дозиметрии и радиоактивности окружающей среды кафедры радиохимии химического факультета МГУ.

Экспериментальная часть

Образцы донных осадков собирали с помощью дночерпателя (площадь отбора 0,25 м²) и пробоотборника с квадратным поперечным сечением (площадь отбора 0,10 м²). Пробы из них брали послойно.

Критерием выделения слоев являлся цвет осадка. Толщина верхнего слоя (I) обычно не превышала 5 мм. Следующие за ним более плотные по консистенции второй (II) и третий (III) слои имеют толщину, в сумме обычно не превышающую 3 см.

В лабораторных условиях пробу донного осадка после высушивания до воздушносухого состояния отжигали в муфельной печи при температуре $400-450^{\circ}$ в течение 6-10 ч.

^{*} Институт Океанологии им. П.П. Ширшова РАН.

^{**} Кафедра аналитической химии.

Затем пробу обрабатывали двумя порциями 8 M азотной кислоты при температуре 80 – 90° по 3 ч.

В объединенную кислотную вытяжку добавляли трассер 236 Ри (в количестве 0,1-0,2 Бк на пробу) и пропускали через сорбционную колонку с три- μ -октилфосфиноксидом (ТОФО), импрегнированным в микропористый тефлон.

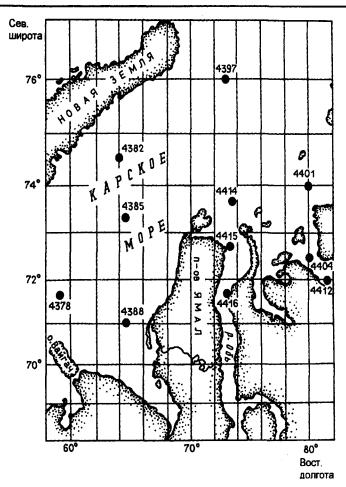
Далее колонку промывали свежеприготовленым 0,2 М раствором аскорбиновой кислоты в 1 М HCl. В этих условиях плутоний переходит в трехвалентное состояние и вымывается в раствор, а уран и торий (которые могут создать помехи на стадии α-спектрометрических измерений) не восстанавливаются, оставаясь связанными с сорбентом.

Аскорбиновокислый элюат обрабатывали при нагревании азотной кислотой до полного обесцвечивания раствора и при необходимости повторяли стадию сорбции-десорбции с новой порцией импрегнированного тефлона.

Из 6 – 8 М азотнокислого раствора, полученного из элюата, проводили экстракцию плутония 0,1 М раствором ТОФО в толуоле дважды по 2 мл в течение 10 мин. Органические фазы объединяли и реэкстрагировали плутоний 0.5 М раствором щавелевой кислоты в 30%-м этаноле (дважды по 2 мл в течение 15 мин). Водно-спиртовые фазы объединяли.

Анализируемую пробу преносили в полиэтиленовый флакон, добавляли необходимый объем плавиковой кислоты и интенсивно перемешивали. Туда же вносили аликвоту 0,2 М азотной кислоты, содержащую 0,1 г лантана. Раствор вновь интенсивно перемешивали, а затем давали отстояться в течение 30 мин, после чего образовавшийся осадок отделяли фильтрованием через лавсановый фильтр с помощью разборной воронки. Затем фильтр отделяли от подложки и досушивали.

Для проведения измерений лавсановые фильтры укреплялись на металлических подложках.


α-Спектрометрические измерения проводили с использованием измерительного пульта "СЭС-13", спетрометра "СЭА-01", блока "БДЗА-01" с кремниевым детектором (площадь чувствительной поверхности 250 мм²) и многоканальным анализатором "LP-4900 TDC-3000".

Химический выход, определенный по 236 Pu, составлял в среднем 48 ± 10 %.

Результаты и их обсуждение

На рисунке указаны расположение и номера станций пробоотбора донных осадков в ходе 49-го рейса НИС «Дмитрий Менделеев».

В таблице представлены результаты определения удельной активности ^{239,240}Pu в этих пробах (с указанием

географических координат станций пробоотбора).

Полученные данные в целом хорошо согласуются с уже упомянутыми результатами совместной российсконорвежской океанографической экспедиции [2]. Проведенные исследования подтверждают, что глобальные выпадения являются основным источником поступления изотопов плутония в этом регионе и свидетельствуют об отсутствии значимого влияния местных захоронений на окружающую среду.В то же время, сравнение средних удельных активностей ^{239,240}Pu, рассчитанных для трех районов проботбора (открытая часть Карского моря, районы Обской губы и Енисейского залива) (см. таблицу), позволяет говорить о влиянии на радиоэкологическую обстановку в Карском море выносов Енисея.

Это предположение подтверждается при сопоставлении полученных результатов с данными об удельной активности ¹³⁷Cs в тех же пробах донных осадков, для которых удельная активность проб из Енисейского залива (до 333 Бк/кг) значимо превышает соответствующие значения для проб, отобранных в Карском море и Обской губе (15 – 70 Бк/кг) [5].

Получены новые данные о содержании 239,240 Ри в донных отложениях из открытой части Карского моря (0,6 – 11,5 Бк/кг), Обской губы (\leq 0,5 – 20,5 Бк/кг) и Енисейского залива (0,8 – 35,5 Бк/кг).

239,240 Ри в пробах донных осадков Карского моря и эстуарных зон Оби и Енисея

Номер	Географические	Слой	Удельная
станции	координаты		активность, Бк/кг
Карское море			
4378	71°40.83′ с.ш.	I	7.4 ± 1.7
	58°56.59′ в.д.		
4382	74°36.8′ с.ш.	I	0.6 ± 0.7
	63°58.2′ в.д.		
		Π	1.7 ± 0.5
4385	73°19.81′ с.ш.	. I	7.6 ± 2.8
	64°36.3′ в.д.		
		П	11.0 ± 2.8
		III	11.5 ± 3.3
4388	71°01.55′ с.ш.	II	7.4 ± 2.0
	64°35.7′ в.д.		
4397	75°59.5′ с.ш.	II	3.0 ± 1.0
	72°40.21′ в.д.		
Среднее			6.0 ± 1.9
	Обская	губа	
4414	73°39.1′ с.ш.	I	20.5 ± 3.1
	73°31.00′ в.д.		
		II	0.2 ± 0.3
		III	≤ 0.5
4415	72°46.9′ с.ш.	I	0.9 ± 0.3
	73°26.3′ в.д.		
4416	71°44.6′ с.ш.	I	4.8 ± 0.7
	73°05.4′ в.д.		
Среднее			2.4 ± 1.1
	Енисейский	залив	
4401	74°00.3′ с.ш.	II	35.5 ± 5.5
	79°57.0′ в.д.		
4404	72°33.00′ с.ш.	III	12.7 ± 3.5
	79°44.6′ в.д.	ļ	
4412	71°48.9′ с.ш.	трал	13.5 ± 6.6
	83°10.4′ в.д.		
4410*		I	1.9 ± 0.4
		II	2.2 ± 0.6
		III	1.4 ± 0.4
Среднее			15.9 ± 4.6

^{*} Точные географические координаты станции отсутствуют

СПИСОК ЛИТЕРАТУРЫ

- 1. Яблоков А.В., Карасев В. К., Румянцев В.М. и др. Факты и проблемы, связанные с захоронением радиоактивных отходов в морях, омывающих территорию Администрации Президента Российской Федерации. Доклад правительственной комиссии. Российской Федерации. М., 1993.
- Strand P., Sickel M., Aarkrog A. et al. / Radionuclides in the Oceans, Inputs and Inventories. Sherburg, 1996. P. 95.
- 3. Perkins R.W., Thomas C.W. / Transuranic Elements in the Environment. Springfield, 1980. P. 53.
- 4. Sholkovitz E.R. // Earth-Sci.Rev. 1983.19. P. 95.
- Sapozhnikov Yu. A., Aibulatov N.A., Plishkin A.N. / Arctic Nuclear Waste Assessment Program Workshop. Woods Hole, Oceanographic Institution. Massachusetts. 1-4 may, 1995.

Поступила в редакцию 26.06.97