НАУЧНАЯ СТАТЬЯ

УДК 544.18 И 544.431.132

МНОГОКОНФИГУРАЦИОННЫЕ КВАНТОВО-ХИМИЧЕСКИЕ РАСЧЕТЫ ПЕРЕНОСА ЭЛЕКТРОНА ДЛЯ ОПИСАНИЯ ФОТОИНДУЦИРОВАННОЙ РЕПАРАЦИИ ДНК

Константин Викторович Одинцов, Татьяна Михайловна Домрачева

Московский государственный университет имени М.В. Ломоносова, химический факультет, Москва, Россия

Автор, ответственный за переписку: Татьяна Михайловна Домрачева, domrachevatm@my.msu.ru

Аннотация. Методом многоконфигурационного взаимодействия CASSCF с поправкой по теории возмущений XMCQDPT2 рассчитаны спектры состояний и дипольные моменты переходов для молекулярной кластерной модели активного центра фермента (6–4) фотолиазы, взаимодействующего с (6–4) фотопродуктом ДНК. Рассмотрен набор моделей, в которых энергии электронных состояний изменяются в широком диапазоне, вследствие включения в состав моделей анионных фосфатных групп фотопродукта и кофактора флавин аденин динуклеотида. Показано, что использование модели поляризуемого континуума растворителя позволяет эффективно учитывать экранирование анионных фосфатных групп в активном центре ферментативного комплекса. Исследованы границы применения двухуровневой модели для оценки матричных элементов неадиабатических переходов, описывающих перенос электрона в комплексе. Выявлена причина существенной их переоценки, связанная с особенностями спектра возбуждений флавина.

Ключевые слова: ДНК фотолиаза, (6–4) фотопродукт, перенос электрона, квантово-химические расчеты. ХМСQDPT2, континуальная модель растворителя РСМ, недиагональные матричные элементы неадиабатического перехода, теория Маркуса, обобщенная схема Малликена – Хуша

DOI: 10.55959/MSU0579-9384-2-2025-66-4-292-302

Финансирование. Работа выполнена при финансовой поддержке Российского научного фонда (проект N 22-23-00418).

Для цитирования: Одинцов К.В., Домрачева Т.М. Многоконфигурационные квантово-химические расчеты переноса электрона для описания фотоиндуцированной репарации ДНК // Вестн. Моск. ун-та. Сер. 2. Химия. 2025. Т. 66. № 4. С. 292–302.

[©] Одинцов К.В., Домрачева Т.М., 2025

ORIGINAL ARTICLE

MULTICONFIGURATION QUANTUM CHEMISTRY CALCULATIONS FOR DESCRIBING PHOTOINDUCED DNA REPAIR

Konstantin V. Odintsov, Tatiana M. Domratcheva

Lomonosov Moscow State University, Faculty of Chemistry, Moscow, Russia

Corresponding author: Tatiana M. Domratcheva, domrachevatm@my.msu.ru

Abstract. Electronic excitation energies and dipole moments have been computed using multiconfiguration CASSCF method further corrected to the second order perturbation theory XMCQDPT2 for a molecular cluster modeling the active site of (6–4) photolyase containing a thymine-thymine (6–4) photoproduct. A set of models is considered in which the excitation energies change in a wide range since anionic phosphate groups of the photoproduct and cofactor flavin adenine dinucleotide (FADH⁻) are included in the models. The results demonstrate that account for solvent effects using a PCM model reproduces the shielding of negative charges of the phosphate groups by the environment of the active site. The limits of the two-state model for estimating the electronic coupling matrix elements may become overestimated due to the presence of a bright excited state in the flavin excitation spectrum.

Keywords: DNA photolyase, (6–4) photoproduct, electron transfer, quantumchemistry calculations XMCQDPT2, solvent model PCM, electronic coupling, Marcus theory, generalized Mulliken–Hush scheme

Financial Support. The work has been supported by the Russian Science Foundation through RSF N 22-23-00418.

For citation: Odintsov K.V., Domratcheva T.M. Multiconfiguration Quantum Chemistry Calculations for Describing Photoinduced DNA Repair // Vestn. Mosk. un-ta. Ser. 2. Khimiya. 2025. T. 66. N 4. S. 292–302.

Облучение молекулы ДНК ультрафиолетовым светом приводит к образованию фотодимеров – ковалентных аддуктов между соседними пиримидиновыми азотистыми основаниями [1]. Наиболее распространенными фотодимерами являются циклобутановые димеры (ЦБД) и пиримидин-пиримидон (6–4) фотопродукты ((6–4) ФП). В некоторых организмах репарация фотодимеров осуществляется ферментами фотолиазами, специфически связывающими и репариру-

Рис. 1. Химическое строение кофактора ФАДН⁻ и фотопродуктов ЦБД и (6–4) ФП, образованных парой соседних тиминов (5'-тимин и 3'-тимин) в ДНК. ЦБД образуется в результате реакции циклоприсоединения с участием связей C6=C5. В (6–4) ФП образуется ковалентная связь C6–C4' и происходит перенос атомов O4' и H3' от 3'-тимина на 5'-тимин

ющими либо ЦБД, либо (6–4) ФП [2]. Активация фотолиаз происходит в результате фотовозбуждения их кофактора флавинадениндинуклеотида (ФАДН⁻). Химическое строение ФАДН⁻, ЦБД и (6–4) ФП представлено на рис. 1. Реакция репарации инициируется переносом электрона от возбужденного флавина ФАДН⁻ на фотодимер ДНК [3]. Таким образом, химическое превращения фотодимера в исходную пару пиримидиновых оснований происходит в радикальном электронном состоянии. Реакция репарации завершается обратным переносом электрона с радикального интермедиата ДНК фотопродукта на флавин ФАДН⁻.

Основными характеристиками процесса репарации, определяемыми экспериментально, являются времена жизни возбужденного и радикального состояний кофактора ФАДН⁻ [4, 5], что позволяет судить о скорости переноса электрона между ферментом и ДНК. Несмотря на активные исследования, молекулярный механизм репарации (6-4) ФП соответствующей (6-4) фотолиазой остается не вполне выясненным [6]. Сложности в установлении механизма обусловлены в том числе низким квантовым выходом реакции репарации [4, 7]. На основании экспериментальных и расчетных исследований были предложены несколько взаимоисключающих схем реакции репарации (6-4) ФП, в которых предметом дискуссии является структура радикального интермедиата, образующегося в результате прямого фотоиндуцировнного переноса электрона [6]. Распад этого интермедиата осуществляется преимущественно путем обратного переноса электрона на флавин, который конкурирует с реакцией репарации. Лишь небольшая доля интермедиата вступает в реакцию перестройки ковалентных связей, приводящую к восстановлению структуры пиримидиновых оснований ДНК. Для окончательного установления химической структуры интермедиата и, соответственно, механизма репарации необходимо сравнение скоростей реакций переноса электрона, полученных на основании молекулярного моделирования, с экспериментальными данными.

Цель настоящей работы – развитие подходов, использующих данные квантово-химических расчетов для оценки констант скорости переноса электрона между ФАДН[–] и (6–4) ФП. Оценка константы скорости в рамках теории Маркуса [8] предполагает получение оценок для недиагональных матричных элементов неадиабатических переходов V_{ii} [9, 10]. В настоящей работе предложен подход, основанный на использовании многоконфигурационных квантово-химических расчетов энергий электронных возбуждений и матричных элементов дипольного момента. Сложности оценки V_{ii} для переноса электрона в комплексе ФАДН и (6-4) ФП связаны с необходимостью расчета и отнесения большого числа электронных состояний в спектре. Мы рассматриваем серию молекулярных кластерных моделей, в которых энергии электронных возбуждений меняются в широких пределах за счет включения в модели анионных фосфатных групп. Анализ результатов расчетов позволяет установить качественное согласие с ранее опубликованными результатами [11], полученными в рамках нестационарной теории функционала плотности, а также определить границы применимости двухуровневой схемы Малликена – Хуша для оценки V_{іі} в рамках многоконфигурационных расчетов комплекса ФАДН и (6-4) ФП. Полученные величины V_{іі} позволяют предположить, что аденин в составе кофактора ФАДН может учувствовать как в прямом фотоиндуцированном переносе электрона, инициирующем репарацию, так и в обратном переносе электрона, снижающем квантовый выход реакции репарации. В то же время, на основании полученных оценок участие З'-тимина в снижении квантового выхода репарации может быль исключено.

Методика расчета

Изучение закономерностей реакций переноса электрона в биомолекулярных комплексах может проводиться в рамках теории Маркуса, где рассматривается неадиабатический переход в двухуровневой электронной системе между состояниями $|i\rangle$ и $|j\rangle$. Константа скорости переноса электрона определяется следующим выражением [8]:

$$k_{ET} = \frac{2\pi}{\hbar} \left| V_{ij} \right|^2 \frac{1}{\sqrt{4\pi\lambda k_B T}} \exp\left(-\frac{E_{ij}^2}{4\lambda k_B T}\right), \quad (1)$$

где λ – энергия реорганизации электронных состояний (предполагается, что значение λ одинаково для обоих электронных состояний), V_{ij} – матричный элемент неадиабатического перехода, E_{ij} – вертикальная разница энергий. Матричные элементы V_{ij} можно оценить по обобщённой схеме Малликена – Хуша, которая опирается на модель слабой связи между состояниями в приближении Франка – Кондона [9].

$$V_{ij} = \frac{\mu_{ij} \Delta E}{\sqrt{\left(\mu_i - \mu_j\right)^2 + 4\mu_{ij}^2}},$$
 (2)

где µ_{іі} – дипольный момент перехода между адиабатическими состояниями $|i\rangle$ и $|j\rangle$, μ_i и μ_j – дипольные моменты этих состояний, E_{ii} – вертикальная разница энергий состояний $|i\rangle$ и $|j\rangle$.Важно то, что обобщенная схема Малликена – Хуша может быть применена и в том случае, когда рассчитываются более двух электронных состояния [9]. Однако, если в спектре содержится несколько состояний, локализованных на доноре или акцепторе, то для сохранения вида формулы (2) необходимо условие, чтобы эти состояния не смешивались друг с другом (приближение локальной адиабатичности). Наличие или отсутствие смешивания состояний определяли путем визуального анализа натуральных МО, изменения электронной плотности, а также путем сравнения дипольных моментов переходов и матричных элементов V_{ii}, рассчитанных в наборе моделей.

В настоящей работе представлен подход, позволяющий оценить влияние размера и состава модели на величины E_{ij} и V_{ij} . На основании кристаллической структуры (6–4) фотолиазы (pdb 3CVU) [12] была построена модель активного центра, включающая кофактор – донор электрона ФАДН, (6-4) ФП, боковые цепи остатков гистидин 365 (Н365), гистидин 369 (Н369) и глутамин 299 (О299). Выбранная кластерная модель состоит из 182 атомов. Ее электронная плотность в двухэкспоненциальном атомном базисе сс-PVDZ [13], использованном нами для всех расчетов, описывается 1982 базисными функциями. Общий заряд молекулярного кластера равен -3. Координаты ядер оптимизированы для основного электронного состояния методом функционала плотности с функционалом B3LYP [14, 15] и поправкой на дисперсионные взаимодействия D3 [16]. Из полученной таким образом модели 1 путем последовательного удаления фрагментов были построены представленные на рис. 2 модели 2-5. Модели 1S-5S имеют ту же геометрию и состав, что и соответствующие модели 1-5, однако квантово-химический расчет в них проводился с использованием континуальной модели растворителя D-PCM [17]. В моделях 1S-5S в качестве растворителя использовали параметризацию для воды, а при расчете энергии электронных

Рис. 2. Набор моделей, в котором проводился расчет энергий возбуждения и дипольных моментов для оценки электронных матричных элементов V_{ij} . В моделях 1–5 расчет проводили без использования модели растворителя. В моделях 1S–5S, имеющих такую же геометрию, как и модели 1–5, расчет проводили с использованием континуальной модели растворителя D-PCM. Фрагменты, составляющие кластерную модель, указаны для модели 1 и 1S

возбуждений учитывали только электростатический вклад в энергию сольватации.

Расчеты спектра электронных состояний и моментов переходов проводили методом многоконфигурационного взаимодействия CASSCF [18] с последующим расчетом поправок к энергиям состояний согласно многоконфигурационной теории возмущений XMCQDPT2 [19]. В активное пространство молекулярных орбиталей (МО) включались одна занятая МО, локализованная на флавине, и несколько свободных МО, локализованных на флавине или на акцепторах электрона аденине ФАДН⁻ и тиминах (6-4) ФП [20]. Таким образом, в CASSCF-расчетах использовали серию активных пространств (2e, Nmo) для расчета N электронных состояний. Число и природа рассчитываемых возбужденных состояний выбирали таким образом, чтобы в спектре присутствовали интересующие нас состояния, описывающие перенос электрона, в особенности перенос электрона на 5'-тимин (6-4) ФП, но при этом рассчитывалось не более 8 состояний. Оптимизацию МО проводили с усреднением энергии по всем рассчитываемым состояниям SAN-CASSCF(2e, Nmo), значения N и состав активного пространства для каждой из моделей приведены в табл. П1 (см. приложение по ссылке: http://www. chem.msu.ru/rus/vmgu/254/292.html).

Отнесение электронных состояний проводили на основании визуального анализа натуральных MO, разностей электронных плотностей состояний, а также по величине изменения дипольного момента. Все квантово-химические расчеты были выполнены в программном пакете Firefly 8.2.0 [21]. Разность рассчитанных энергий состояний E_{ij} , их дипольные моменты μ_{ii} , μ_{jj} и дипольные моменты переходов μ_{ij} использовали для оценки матричных элементов V_{ii} по формуле (2).

Результаты расчетов

Кластерная модель активного центра, рассмотренная в работе, представлена на рис. 3. В активном центре фотолиазы конформация кофактора $\Phi A Д H^-$ такова, что флавин (HQ) находится на минимальном удалении от аденина (Ade). В модели фосфатная группа в составе (6–4) $\Phi \Pi$ (P1) и один из двух фосфатов $\Phi A Д H^-$ (P2) присутствуют в анионной форме. С помощью серий моделей 1–5 и 1S–5S, представленных на рис. 2, в работе охарактеризовано влияние анионных фосфатов на энергии возбуждения и дипольные моменты состояний и переходов.

Изменение энергий возбуждения и дипольных моментов состояний, а также переходов в рассмотренных моделях представлено на рис. 4. В моделях 1-5, не учитывающих экранирование отрицательных зарядов флавина и фосфатов полярным окружением, спектр возбуждения претерпевает существенные изменения при появлении в моделях фосфатных групп. Учет влияния растворителя в моделях 1S-5S приводит к существенному уменьшению диапазона изменений энергий состояний. Среди рассчитанных состояний, как правило, находятся два возбужденных состояния гидрохинона флавина (состояния типа local excitation, LE-HQ). Основными электронными конфигурациями этих состояний являются пара однократно занятых МО флавина – высшая занятая ВЗМО и низшая свободная НСМО (состояние LE-HQ1) и ВЗМО и НСМО+1 (состояние LE-HQ2). Энергии LE-состояний изменяются в моделях в диапазоне 0,3 эВ и в среднем составляют соответственно 2,6 и 3,3 эВ. Включение РСМ в модели приводит к увеличению разности энергий LE состояний вследствие небольшого снижения и увеличения энергий LE-HQ1 и LE-HQ2 соответственно. Возбуждение из основного состояния (HQ) в состояние LE-HQ1 имеет небольшой дипольный момент перехода (среднее значение 0,26 а.е.). В электронном спектре флавина этому переходу соответствует плечо 460 нм (энергия 2,7 эВ) [4]. Напротив, переход между состояниями HQ и LE-HQ2 имеет большой дипольный момент перехода (среднее значение 2,09 а.е.). В спектре поглощения (6-4) фотолиазы этот переход представлен полосой с максимумом 380 нм (энергия 3,3 эВ) [4]. Таким образом, рассчитанные для моделей энергии состояний LE-HQ1 и LE-HQ2 находятся в хорошем согласии с энергиями, соответствующими экспериментальному спектру фотолиазы.

Кроме возбужденных состояний гидрохинона флавина, в спектре присутствуют состояния, отвечающие переносу электрона с флавина на акцепторы электрона (состояния типа electron transfer, ET). ЕТ-состояния описываются электронной конфигурацией с однократно заселенной парой МО, принадлежащей донору и акцептору электрона. В рассмотренных моделях к акцепторам относятся аденин в составе ФАДН (состояние ET-Ade), 5'-тимин и 3'-тимин, образующие (6-4) ФП, (состояния ET-5'-base и ET-3'-base). Спектры состояний моделей 4 и 5 демонстрируют, что 5'-тимин и аденин имеют меньшее сродство к электрону, чем З'-тимин, поскольку состояния ET-5'-base и ET-Ade лежат выше по энергии, чем состояние ET-3'-base. В моделях 1-3 энергии ЕТ-состояний возрастают, а состояние ET-5'-base

Рис. 3. Кластерная модель активного центра (6–4) фотолиазы. Модель включает следующие фрагменты: HQ – гидрохинон изоаллоксазинового кольца ФАДН⁻, Ade – остаток аденина ФАДН⁻, 3'-base и 5'-base – 3'- и 5'-тимины (6–4) ФП, P1 – депротонированный фосфат в составе ФАДН⁻, P2 – депротонированный фосфат в составе (6–4) ФП, H365 – фрагмент гистидина 365, H369 – фрагмент гистидина 369, Q299 – фрагмент глутамина 299. Показаны расстояния (А) от фрагментов P1 и P2 до аденина и тиминов (6–4) ФП, (Б) от изоаллоксазинового кольца ФАДН⁻ до аденина и тиминов (6–4) ФП

из-за его высокой энергии отсутствует в рассчитанном спектре. Вследствие влияния анионных фосфатных групп в моделях 1-5 изменение энергий ET-3'-base и ET-Ade составляет 1,4 и 0,6 эВ соответственно. Состояние ET-5'-base появляется в спектре только при удалении фосфатов (модели 4, 5, 4S и 5S) или при экранировании фосфатов растворителем (модели 1S-3S). В моделях 1S-5S энергии состояний типа ЕТ меняются в существенно меньшем диапазоне по сравнению с моделями 1-5. Максимальное изменение в моделях 1S-5S получено для энергии состояния ET-3'-base и составляет 0,4 эВ. Таким образом, добавление в модели фосфатов без учета их экранирования приводит к переоценке энергий состояний типа ЕТ. Возбуждения из основного состояния в состояния типа ЕТ характеризуются малыми величинами момента перехода μ_{0i} (табл. П4, см. приложение по ссылке http://www.chem.msu.ru/rus/ vmgu/254/292.html), поэтому данные переходы не наблюдаются в электронном спектре фотолиазы.

Состояния типа ЕТ характеризуются значительными изменениями дипольного момента относительно основного состояния $\mu_{00}-\mu_{jj}$ (рис. 4, Г), что связано с полным переносом отрицательного заряда с флавина на акцептор электрона. Увеличение величины $\mu_{00}-\mu_{jj}$ наблюдается с увеличением расстояния между донором и акцептором электрона (рис. 3). Уменьшение величин $\mu_{ii} - \mu_{jj}$ в некоторых моделях по сравнению с остальными указывает на замешивание состояний типа ЕТ и LE, которые близки по энергии. Например, в моделях 3S и 4S происходит замешивание состояний ET-5'-base и LE-HQ2, что приводит к уменьшению величины $\mu_{ii} - \mu_{jj}$ для пар состояний LE-HQ1/ET-5'-base, HQ/ET-5'-base и ET-Ade/ET-5'-base.

На основании результатов квантово-химических расчетов была проведена оценка недиагональных матричных элементов V_{іі} между состояниями типа ЕТ и состояниями донора электрона гидрохинона флавина по формуле (2). Для моделирования переноса электрона, протекающего при фотовозбуждении фотолиазы, важны три элементарные реакции: прямой перенос электрона с возбужденного флавина на акцептор, для которого рассматривается состояние типа ЕТ в комбинации с состоянием LE-HQ1, обратный перенос электрона – состояние типа ЕТ с основным состоянием HQ и перенос электрона между различными акцепторами – пара состояний типа ЕТ. Изменения полученных величин V_{ij} в моделях представлены на рис. 5 и в табл. Пб (см. приложение по ссылке http://www.chem.msu.ru/ rus/vmgu/254/292.html). Матричные элементы V_{ij} увеличиваются в ряду акцепторов З'-тимин, 5'-тимин и аденин, что соответствует уменьшению расстояния от этих акцепторов до донора

Рис. 4. Результаты расчетов спектра состояний активного центра 6-4 фотолиазы. (А) Энергии возбуждения E_{0i} (эВ), (Б, В) длины дипольных моментов перехода μ_{0i} (а.е.) и (Г) длины разности дипольных моментов основного состояния и состояний с переносом заряда $\mu_{00} - \mu_{ii}$ (Д), рассчитанные в моделях 1–5 и 1S–5S. Численные значения энергий возбуждения E_{0i}, абсолютных энергий, дипольных моментов перехода µ_{ii}, и разностей дипольных моментов µ_{ii}-µ_{ji}

Рис. 5. Величины недиагональных электронных матричных элементов V_{ij} (см⁻¹), рассчитанные по формуле (2). Полученные значения V_{ij} по величине разделены на две группы (А, Б). Численные значения V_{ij} представлены в табл. Пб (см. приложение по ссылке http://www.chem.msu.ru/rus/vmgu/254/292.html)

электрона флавина (рис. 3). Для всех акцепторов значения V_{ij} несколько возрастают в случае обратного переноса электрона по сравнению с прямым переносом электрона. Благодаря малому расстоянию между акцепторами аденином и 5'-тимином V_{ij} матричный элемент перехода между состояниями ET-Ade и ET-5'-base имеет большое значение. Также стоит отметить некоторое уменьшение V_{ij} в моделях 5 и 5S, что указывает на недооценку взаимодействий между донором и акцептором в самых маленьких по размеру моделях.

Важно отметить, что в некоторых моделях наблюдается существенное увеличение матричных элементов, в особенности для акцепторов 5'-тимина и аденина, что указывает на проблемы с применимостью двухуровневой модели. Причиной увеличения V_{іі} является увеличение моментов переходов µ_{ii}, что демонстрируют соответствующие высокие коэффициенты корреляции (таб. П7 (см. приложение по ссылке http:// www.chem.msu.ru/rus/vmgu/254/292.html). В то же время корреляция величин V_{ij} с энергиями возбуждения Е_{іі} и нормой разности дипольных моментов $\mu_{ii} - \mu_{ii}$ менее выражена, а для некоторых пар состояний отсутствует (табл. П7). Полученные корреляции указывают на то, что проблемы с применимостью двухуровневой модели в первую очередь связаны с увеличением µ_{ii} из-за присутствия в рассчитанном спектре состояния типа LE с высоким дипольным моментом перехода. Данное LE-состояние не рассматривается при переносе электрона, но появляется в рассчитанном спектре состояний потому, что его энергия ниже, чем энергия рассматриваемого состояние типа ЕТ. Замешивание состояний, обусловленное их энергетической близостью, проявляется в снижении µ_{ii} «яркого» перехода и одновременном увеличении µ_{ii} «темного» перехода, что и приводит к увеличения матричных элементов V_{ii}. Поскольку переход из основного состояния в LÉ-HQ2 имеет большую величину μ_{ii} , переоценка V_{ii} происходит для обратного переноса электрона с аденина и 5'-основания в тех моделях, где состояния ET-Ade и ET-5'-base близки по энергии к LE-HQ2. Завышение V_{ii} существенно, поскольку величины μ_{0i} для перехода в LE-HQ2 и ET-Ade (или ET-5'-base) отличаются на несколько порядков. Переоценка может возникать в том случае, когда состояния типа ЕТ имеют энергию возбуждения выше, чем энергия LE-HQ2, и поэтому ЕТ-состояние не может быть включено в расчетный спектр без включения состояния LE-HQ2. Матричные элементы с состоянием LE-HQ1, описывающие фотоиндуцированный прямой перенос электрона, в меньшей степени подвержены переоценке из-за присутствия в спектре состояния LE-HQ2, поскольку дипольный момент перехода между состояниями LE-HQ1 и LE-HQ2 имеет среднее значение 0,21 а.е. (табл. П4, (см. приложение по ссылке http:// www.chem.msu.ru/rus/vmgu/254/292.html).

Обсуждение результатов

Для установления механизмов репарации ДНК необходимо сравнивать скорости переноса электрона между кофактором ФАДН и фотопродуктом ДНК (рис. 1), что позволит сравнить предсказания моделей с экспериментальными данными. Такие оценки можно получить в рамках теории Маркуса по формуле (1), согласно которой максимальная скорость определяется матричными элементами неадиабатического перехода V_{ii}. На практике задача сводится к проведению квантово-химических расчетов спектра состояний и дипольных моментов, которые позволяют оценить недиагональные матричные элементы по формуле (2). В настоящей работе расчеты проводили многоконфигурационным методом CASSCF с последующей поправкой энергий состояний во втором порядке теории возмущений XMCQDPT2. Пространство активных МО выбирали исходя из того, что возбужденные состояния описываются одной занятой и одной вакантной MO. Занятой МО для всех рассмотренных возбужденных состояний является МО, локализованная на флавине, а свободная МО в зависимости от состояния относится либо к флавину, либо другому молекулярному фрагменту кластерной модели. Соответственно выбранным МО, в рассчитанном спектре присутствуют два типа возбужденных состояний: состояния возбуждения флавина и состояния переноса электрона с флавина на другой молекулярный фрагмент – акцептор электрона. Для оценки матричного элемента V_{ii}, характеризующего фотоиндуцированный перенос электрона, необходимо рассмотреть первое возбужденное состояние флавина (LE-HQ1) и одно из состояний переноса электрона, а для оценки V_{ii} обратного переноса электрона - основное состояние (HQ) и состояние переноса электрона.

Особенностью активного центра фотолиаз является ионизированное (анионное) состояние донора электрона гидрохинона флавина, а также присутствие анионных фосфатных групп в составе ФАДН⁻ кофактора и ДНК субстрата. Включение анионных фосфатных групп в кластерную модель активного центра фермента существенно

увеличивает энергии состояний переноса электрона, поскольку фосфатные группы расположены близко к акцепторам электрона (рис. 3). В ферменте фотолиаза электростатические заряды ионизированных групп экранируются посредством взаимодействий с полярными и ионизированными аминокислотными остатками белка и молекулами воды. Это приводит к снижению отталкивания между перенесенным электроном и заряженным окружением акцептора электрона и, как следствие, к понижению энергии соответствующего состояния переноса электрона. В настоящей работе эффект экранирования зарядов ионизированных групп учитывали, используя континуальную модель полярного растворителя. Учет экранирования приводит к существенному понижению энергий состояний переноса электрона (рис. 4), что связано с электростатическим вкладом в энергию сольватации. По результатам расчетов модели 1S, энергии переноса электрона на 3'-тимин, аденин и 5'-тимин составляют соответственно 1,8; 3,0 и 3,4 эВ, а энергия возбужденного флавина составляет 2,4 эВ.

Дипольные моменты переходов, соответствующих переносу электрона, близки к нулю, в то время как дипольный момент возбуждения флавина равен 0,35 а.е. Кроме того, в спектре состояний присутствует второе возбужденное состояние флавина (LE-HQ2), переход в которое из основного состояния имеет дипольный момент 2,14 a.e., и энергия которого (3,3 эВ) близка к энергиям переноса электрона на аденин и 5'-тимин (рис. 4). Замешивание состояния LE-HQ2 с состояниями переноса электрона из-за близости энергий приводит к уменьшению дипольного момента перехода из основного состояния в LE-HQ2 и увеличению момента перехода для переноса электрона из основного состояния. Таким образом, описанный эффект приводит к существенной переоценке зачений V_{ii}, рассчитанных по формуле (2) для обратного переноса электрона в фотолиазе.

С учетом описанного выше ограничения применения двухуровневой схемы модель 1S позволяет сделать следующие выводы о максимальных скоростях прямого и обратного переноса электрона в активном центре фотолиазы. Для фотоиндуцировнного переноса электрона предпочтительными акцепторами электрона являются аденин и 5'-тимин (соответствующие значения V_{ij} равны 35 и 23 см⁻¹), в то время как максимальная скорость переноса электрона на 3'-тимин согласно формуле (1) должна быть на три порядка ниже ($V_{ij} < 1 \text{ см}^{-1}$). Кроме того, можно предположить перенос электрона на (6-4) ФП через аденин, так как перенос электрона с аденина на 5'-тимин может протекать с очень высокой скоростью ($V_{ij} = 589 \text{ см}^{-1}$). Для всех акцепторов максимальная скорость обратного переноса электрона выше, чем соответствующая скорость прямого переноса электрона. В частности, увеличение на порядок величины V_{ij} для адени-на и 5'-тимина (381 и 239 см⁻¹ соответственно), указывает на возможность быстрой реакции обратного переноса электрона на флавин с их участием. Эта реакция конкурирует с реакцией репарации фотопродукта и соответственно снижает квантовый выход репарации. Несмотря на увеличение V_{іі}, обратный перенос электрона с 3'-тимина на флавин не может протекать с высокой скоростью ($V_{ii} = 6 \text{ см}^{-1}$).

Полученные в рамках модели 1S оценки энергий и недиагональных матричных элементов в целом хорошо согласуются с данными работы [11], несмотря на существенные различия в расчетных методиках. В работе [11] геометрии описывались в рамках силового поля, а расчеты спектра состояний проводили методом нестационарной теории функционала плотности с использованием усреднения вдоль молекулярно-динамической траектории в рамках гибридной квантово-механической/ молекулярно-механической (КМ/ММ) схемы, с КМ-подсистемой, близкой по размеру к моделям 4 и 4S. Полученные таким образом энергии возбуждения флавина и переноса электрона на аденин (соответствующие максимумам распределений вдоль молекулярно-динамической траектории) практически совпадают с энергиями модели 1S. В то же время, энергии переноса электрона на 3'-тимин и 5'-тимин ниже на 0,4 и 0,7 эВ соответственно по сравнению с результатами модели 1S, что, вероятно, обусловлено использованием силового поля для описания геометрии фотопродукта в работе [11]. Средние медианные значения *V_{ii}* для переноса электрона на 3'-тимин и 5'-тимин составляют соответственно 3 и 20 см⁻¹ в работе [11], что практически совпадает с оценками модели 1S, хотя для переноса электрона на аденин величина 216 см⁻¹ [11] в разы превосходит величину, полученную в нашем расчете, а для переноса электрона с аденина на 5'-тимин значение 398 см⁻¹ [11] несколько ниже, чем полученное для модели 1S. Заметим, что в работе [11] тоже использовалась двухуровневая схема оценки V_{ii}, но вместо дипольных моментов рассматривалось перераспределение электрического заряда [22].

Важно подчеркнуть, что расчеты кластерной модели являются существенно менее трудоемкими по сравнению с расчетами, представленными в работе [11], но при этом позволяют сделать схожие выводы об относительно низких скоростях переноса электрона на З'-тимин, что исключает роль последнего в снижении квантового выхода реакции репарации (6–4) фотолиазы.

Заключение

В рамках многоконфигурационных квантовохимических расчетов рассмотрено влияние состава кластерной модели активного центра (6–4) фотолиазы на энергии электронных возбуждений и величины недиагональных матричных элементов V_{ij} . Предложенная серия моделей позволяет описать существенные изменения энергий пере-

СПИСОК ЛИТЕРАТУРЫ

- Douki T. // Photochem. Photobiol. Sci. 2013. Vol. 12. N 8.
 P. 1286–1302.
- Sancar A. // Chem. Rev. 2003. Vol. 103. N 6. P. 2203– 2237.
- 3. Sancar A. // J. Biol. Chem. 2008. Vol. 283. N 47. P. 32153–32157.
- 4. Li J. et al. // Nature. 2010. Vol. 466. N 7308. P. 887-890.
- Brettel K., Müller P., Yamamoto J. // ACS Catal. 2022. Vol. 12. N 5. P. 3041–3045.
- Yamamoto J., Plaza P., Brettel K. // Photochem. Photobiol. 2017. Vol. 93. N 1. P. 51–66.
- Yamamoto J. et al. // Angew. Chem/ Int. Ed. 2013. Vol. 52. N 29. P. 7432–7436.
- Marcus R.A., Sutin N., Amos A. // Biochim. Biophys. Acta. 1985. Vol. 811. P. 265–322.
- Cave R.J., Newton M.D. // Chem. Phys. Lett. 1996.
 Vol. 249. N 1–2. P. 15–19.
- 10. Hsu C.P. // Acc. Chem. Res. 2009. Vol. 42, N 4. P. 509–518.
- Osswald M., Fingerhut B.P. // J. Phys. Chem. B. 2021.
 Vol. 125. N 31. P. 8690–8702.
- Maul M.J. et al. // Angew. Chem. Int. Ed. 2008. Vol. 47. N 52. P. 10076–10080.

носа электрона с флавина на акцепторы электрона (аденин и (6-4) фотопродукт) при включении в кластерные модели депротонированных фосфатных групп, а также при учете электростатического экранирования анионных групп в белковой системе. Протестирована применимость двухуровневой модели для оценки недиагональных матричных элементов и, соответственно, максимальных скоростей переноса электрона. Показано, что присутствие в спектре второго (высоколежащего) состояния возбужденного флавина может приводить к переоценке недиагональных матричных элементов. Представленные результаты позволяют предположить участие аденина в прямом и обратном переносах электрона и исключить участие З'тимина в обратном переносе электрона, который ответственен за снижение квантового выхода реакции репарации (6-4) фотолиазы.

- Dunning T.H. // J. Chem. Phys. 1989. Vol. 90, N 2. P. 1007–1023.
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988.
 Vol. 37. P. 785.
- Becke A.D. // J. Chem. Phys. 1993. Vol. 98, N 7. P. 5648– 5652.
- Grimme S. et al. // J. Chem. Phys. 2010. Vol. 132, N 15.
 P. 154104.
- Miertus S., Scrocco E., Tomasi J. // Chem. Phys. 1981.
 Vol. 55. P. 117–129.
- Roos B.O., Taylor P.R., Sigbahn P.E.M // Chem. Phys. 1980. Vol. 48. N 2. P. 157–173.
- Granovsky A.A. // J. Chem. Phys. 2011. Vol. 134. N 21. P. 214113.
- Domratcheva T. // J. Am. Chem. Soc. 2011. Vol. 133. N 45. P. 18172–18182.
- Granovsky A.A. Firefly version 8.0.0. www http:// classic.chem.msu.su/gran/firefly/index.html accessed 24.02.2025.
- Voityuk A.A., Rösch N. // J. Chem. Phys. 2002. Vol. 117. N 12. P. 5607–5616.

Информация об авторах

Константин Викторович Одинцов – аспирант химического факультета МГУ имени М.В. Ломоносова, инженер 1-й категории химического факультета МГУ имени М.В. Ломоносова (konstantin.odintsov@chemistry.msu.ru);

Татьяна Михайловна Домрачева – ст. науч. сотр. кафедры физической химии химического факультета МГУ имени М.В. Ломоносова, канд. хим. наук (domrachevatm@my.msu.ru).

Вклад авторов

К.В. Одинцов выполнял расчеты и анализ результатов, подготовку рисунков и таблиц и написание исходного варианта статьи. Т.М. Домрачева осуществляла постановку задачи, анализ результатов и написание окончательного варианта статьи.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Статья поступила в редакцию 07.06.2024; Одобрена после рецензирования 17.09.2024; Принята к публикации 11.02.2025.