УДК 544.18:547.793:547.314

ПРЕВРАЩЕНИЯ ${ m CO_2}$ В ДВУХФАЗНЫХ СИСТЕМАХ ${ m C_8F_{18}\text{--}H_2O}$ И ${ m C_6F_6\text{--}H_2O}$

М.В. Вишнецкая¹*, М.С. Иванова ¹, М.Я. Мельников²

(¹ Российский государственный университет нефти и газа имени И.М. Губкина; ² Московский государственный университет имени М.В. Ломоносова, химический факультет, кафедра химической кинетики; *e-mail: mvvishnetskaya@mail.ru)

Превращение диоксида углерода в водных эмульсиях перфторанов в присутствии кислорода воздуха приводит к образованию смеси щавелевой кислоты и минорного набора органических веществ C_4 – C_8 . Максимальное поглощение CO_2 происходит в эмульсии с объемным соотношением C_8F_{18} : $H_2O=1$:0,42 при pH 2,4; выход $H_2C_2O_4$ составляет 11 мол.%.

Ключевые слова: молекулярный кислород, активация, CO₂, щавелевая кислота, перфтороктан, перфторбензол, эмульсия, кислотность.

Каталитическое окисление органических веществ лежит в основе многих процессов основного и тонкого органического синтеза. Актуальная задача, стоящая перед химиками, заключается в создании новых каталитических систем, способных, с одной стороны, обеспечить экологическую безопасность получения кислородсодержащих продуктов, а с другой, соответствовать современным критериям энерго- и ресурсосбережения.

Молекулярный кислород (дикислород, O_2) представляет собой оптимальный естественно возобновляемый и доступный окислительный агент. Часто каталитические реакции окисления с использованием молекулярного кислорода осуществляются на гетерогенных контактах при достаточно высокой температуре. В этом случае либо имеет место диссоциативная адсорбция триплетных молекул дикислорода с образованием монокислородных радикалов, либо достаточно подвижный структурный кислород катализатора участвует в окислении субстрата по циклическому окислительно-восстановительному механизму.

В живой природе можно найти примеры принципиально иного пути активации молекулярного кислорода, лежащие в основе биологических окислительных циклов — процессов дыхания, клеточного метаболизма и других процессов. Этот путь обеспечивают биокатализаторы, принадлежащие к классу оксигеназ, в частности метанмонооксигеназа (ММО), которая активирует молекулы дикислорода, переводя их в активную синглетную форму [1]. Очевидное достоинство таких биокаталитических циклов (помимо использования молекулярного

кислорода как окислительного агента) заключается в том, что они протекают при температуре, близкой к комнатной, и атмосферном давлении. Поэтому понятны многочисленные попытки [2] создания функциональных аналогов биокатализаторов, которые, обладая высокой активностью и селективностью при обычных условиях, были бы лишены некоторых недостатков ферментов.

Как показали исследования последних двух десятилетий, к таким биомиметикам можно отнести фторсодержащие органические соединения, в частности трифторуксусную кислоту, которая широко используется в препаративной органической химии в качестве мягкого окислителя [3].

Хорошо известна способность перфторуглеродов и фторуглеводородов растворять значительное количество молекулярного кислорода [4], а также образовывать молекулярные комплексы с дикислородом в случае соединений, содержащих связь фтор—углерод, [5]. Это позволяет предположить, что фторсодержащие соединения могут активировать молекулярный кислород в отношении соединений-восстановителей. Продукты окисления, как правило, имеют более высокую полярность, чем исходные вещества, что обеспечивает их несмешиваемость с перфторуглеродным растворителем, а следовательно, и легкое разделение.

В [6] представлен способ парциального окисления ароматических углеводородов в присутствии фторированных/перфторированных углеводородов, повышающий эффективность и селективность процесса (образование адипиновой кислоты) и облегчающий выделение целевого продукта. В работе [7] была найдена

зависимость выхода SO₃ при окислении SO₂ молекулярным кислородом в перфторуглеродах от строения последних. Показано, что активность в реакции окисления растет при переходе перфторалкана от С₆ к С₁₂ и зависит от его строения (в перфтор-2-метилпентане она выше, чем в перфторгексане). Ранее нами было показано [8, 9], что в безводной трифторуксусной кислоте (TFA) и ее растворах при комнатной температуре и атмосферном давлении протекают превращения диоксида углерода с образованием щавелевой кислоты и набора органических веществ C_2 – C_{14} , выход которых составляет ~70 мас.% на поглощенный СО₂. Теоретическое исследование [10] показало, что в качестве активных интермедиатов реакции окисления различных субстратов молекулярным кислородом в безводной TFA могут выступать гидропероксидные радикалы HO_2^{\bullet} .

В настоящей работе мы попытались проверить возможность перфторуглеродов активировать молекулярный кислорода в реакции превращения CO_2 .

Экспериментальная часть

Реакции превращения СО₂ в перфторанах и двухфазной системе перфторан-вода проводили при комнатной температуре и атмосферном давлении. Содержание основного вещества в перфтороктане и перфторбензоле (НПО «ПиМ-Инвест») составляло 99 мас.%. Диоксид углерода получали в аппарате Киппа при взаимодействии разбавленной соляной кислоты с мраморной крошкой. Скорость пропускания СО, регулировали с помощью крана тонкой регулировки и измеряли реометром. Выделившийся СО₂ пропускали со скоростью 7 мл/мин через барботёр, содержащий перфтороктан/перфторбензол или их смесь с водой (объемные соотношения C₈F₁₈/C₆F₆:H₂O составляли 1:0; 1:0,42; 1:2,32 и 0:1). Непрореагировавший СО, на выходе из системы улавливали с интервалом в 5 мин, используя съемные ловушки, снабженные раствором NaOH (0,4 M), за рН которого непрерывно следили с помощью стеклянного электрода. По окончании реакции жидкую смесь тщательно взбалтывали, а после разделения отделенные фазы анализировали.

Количество образующихся при взаимодействии CO_2 с раствором NaOH гидрокарбоната и карбоната натрия определяли путем потенциометрического титрования 1 М раствором HCl на приборе «Эксперт-001-3» с помощью рН-электрода («ЭСК-10601/7») и стеклянного

электрода сравнения («ЭВЛ-1М3.1»). Для калибровки рН-электрода использовали стандартные растворы калия тетраоксалата ($KH_8C_4O_8$), приготовленные из 0,05 M фиксанала (ГОСТ 8.135-74).

Продукты превращения CO_2 были идентифицированы как щавелевая кислота и смесь минорных кислородсодержащих углеводородов C_4 – C_8 . Количество образовавшейся кислоты $H_2C_2O_4$ в эмульсии определяли потенциометрическим титрованием водной фазы 1 М раствором NaOH на автоматическом потенциометрическом титраторе «ATП-02» с электродом «ЭСЛ-43-07СР» и стеклянным электродом сравнения «ЭВЛ-1М3.1».

Спектры ЯМР 1 Н и 13 С сухих остатков регистрировали на спектрометре «Bruker Avance-600» при температуре 300 К; химические сдвиги δ измеряли в м.д. относительно сигналов растворителя (ДМСО- 4 6: $\delta_{\rm H}$ 2.50, $\delta_{\rm C}$ 39.5 м.д). Спектры MALDI-TOF регистрировали на спектрометре «Bruker Ultraflex»; в качестве матрицы использовали дитранол (1,8-дигидроксидигидроантрацен-9-он).

Результаты и обсуждения

На рис. 1 представлены экспериментальные зависимости абсорбции диоксида углерода от времени пропускания его потока через 50 мл двухфазной жидкости при объемных соотношениях C_8F_{18} : H_2O , равных 1:0; 0,7:0,3; 0,3:0,7 и 0:1.

Общее количество абсорбированного диоксида углерода ($N_{\rm CO_2}$) при разных объемных соотношениях $\rm C_8F_{18}:H_2O$, оцененное по полной площади под экспериментальными кривыми (рис. 1), приведено на рис. 2, где показано, что максимальное поглощение $\rm CO_2$ имеет место при соотношении $\rm C_8F_{18}:H_2O=0,7:0,3$. Все дальнейшие исследования проводили именно при этом соотношении компонентов.

На рис. 3 приведены зависимости количества абсорбированного диоксида углерода эмульсией с объемным соотношением C_8F_{18} : $H_2O=0,7:0,3$ при разных значениях pH. Величину pH варьировали добавлением в систему HCl $(0,01\ M)$.

Из полученных данных видно, что зависимость количества абсорбированного CO_2 от величины рН носит экстремальный характер и несмотря на рост рН поглощение CO_2 уменьшается. Так, в слабощелочной среде (рН 6,6) поглощение CO_2 в 4 раз меньше, чем в кислой (рН 2,4). Аналогичный эффект описан [11] при окислении SO_2 растворами трифторуксусной кислоты (TFA).

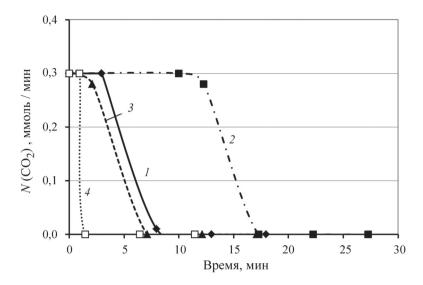


Рис. 1. Зависимость скорости абсорбции ${\rm CO_2}$ (скорость потока 7 мл/мин) от времени при объемных соотношениях ${\rm C_8F_{18}:H_2O}$, равных 1:0 (1); 0,7:0,3 (2); 0,3:0,7 (3) и 0:1 (4)

Результаты квантово-химических расчетов [12] молекулярной системы $(CF_3CO_2H_2^+...CO_2...CF_3CO_2^-)$, стабилизированной четырьмя молекулами TFA, указывают на возможность безактивационного переноса протона с катиона на молекулу CO_2 , который сопровождается переносом электрона с аниона CF_3COO^- , что приводит в конечном итоге к образованию радикалов CHO_2^+ , а затем молекул щавелевой кислоты. Если при значениях pH < 4 превалирует второй фактор, то при значениях pH < 2, скорее всего, начинает сказываться уменьшение растворимости CO_2 в кислых средах.

Отмечено, что при поглощении CO₂ значение pH меняется. Так, если до начала абсорбции величина pH водной части эмульсии равнялась 6,5, то по окончании абсорбции величина pH составила 5,0–4,8 (pH насыщенного раствора диоксида углерода в воде равен 3,9).

В результате реакции с CO_2 растворенный O_2 расходуется, в результате чего система теряет свою активность, но после насыщения реакционной среды кислородом воздуха активность восстанавливается. На рис. 4 приведена зависимость выхода $\mathrm{H_2C_2O_4}$ от содержания $\mathrm{C_8F_{18}}$ в эмульсии при рН 2,4.

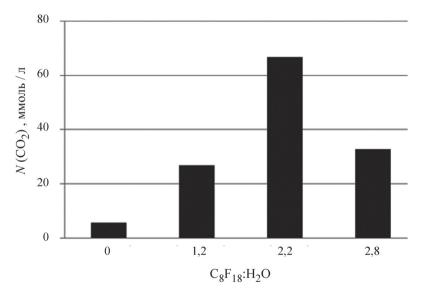


Рис. 2. Зависимость количества абсорбированного ${\rm CO_2}$ от объемного соотношения ${\rm C_8F_{18}:H_2O}$

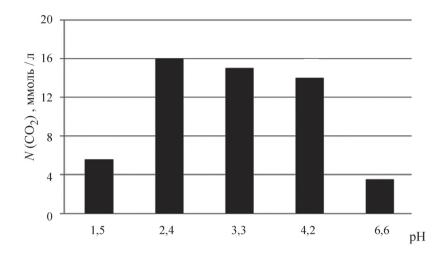


Рис. 3. Зависимость количества абсорбированного CO_2 при разных значениях рН для C_8F_{18} : $H_2O=0,7:0,3$

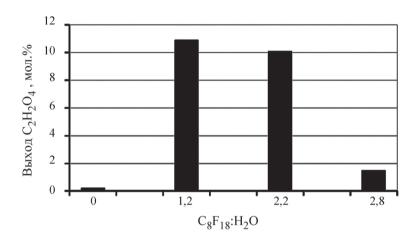


Рис. 4. Зависимость выхода ${
m H_2C_2O_4}$ от объемного соотношения ${
m C_8F_{18}:H_2O}$ при pH 2,4

В спектре MALDI-TOF для веществ, полученных в растворах TFA после реакции с CO_2 [13], наблюдали сигналы с массой молекулярного катиона 227, 305 и 343, которым могут соответствовать соединения с брутто-формулой $C_4O_{11}H_3$, $C_8O_{13}H$, $C_8O_{15}H_7$ соответственно. Селективность по $H_2C_2O_4$ составляла 23%. В эмульсиях после высушивания водной части при 30 °C было получено немного твердого вещества белого цвета (~1 мас.% от поглощенного CO_2). Таким образом, в эмульсиях селективность по $H_2C_2O_4$ близка к 100%. В спектре MALDI-TOF сухого вещества получен сигнал с массой молекулярного катиона 227, которому могут соответствовать соединения с брутто-формулой $C_4O_{11}H_3$.

На рис. 5 представлены экспериментальные зависимости скорости поглощения диоксида углерода от времени его пропускания через 111 мл двухфазной жидкости C_6F_6 : H_2O при pH 1,5 и 2,4 (рН варьировали добавлением 0,01 М HCl) при объемном соотношении C_6F_6 : $H_2O=0,55$:0,45 (при этом соотношении выход $H_2C_2O_4$ в системе с C_8F_{18} максимален).

В таблице приведены сводные данные о взаимодействии CO_2 в двухфазных системах C_8F_{18} — H_2O и C_6F_6 — H_2O при объемном соотношении C_xF_y : $H_2O=0,55:0,45$. Из таблицы видно, что с уменьшением величины рН снижается поглощение CO_2 , одновременно с этим увеличивается выход щавелевой кислоты и минорных продуктов превращения. Этот эффект можно объяснить действием двух факторов. Во-первых, с понижением рН уменьшается растворимость, снижаются концентрации CO_2 и O_2 в системе. Во-вторых, в сильно кислой среде может увеличиваться концентрация пероксидных радика-

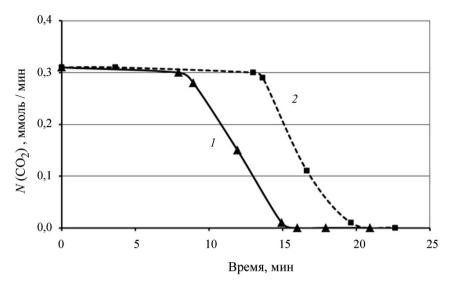


Рис. 5. Зависимость скорости абсорбции CO_2 от времени при объемном соотношении C_6F_6 : $H_2O=0,55:0,45$ при pH 1,5 (1) и pH 2,4 (2)

Выход продуктов превращения CO_2 в двухфазных системах C_8F_{18} – H_2O и C_6F_6 – H_2O (C_xF_v : H_2O = 0,55:0,45)

Среда	рН	Поглощено ${ m CO}_2$, ммоль/л	Превращено ${\rm CO}_2$, ммоль/л	Выход, %*
<i>н</i> -С ₈ F ₁₈	2,4	199	13	7
<i>н</i> -С ₈ F ₁₈	1,5	70	9	13
C_6F_6	2,4	77	8	10
C ₆ F ₆	1,5	61	15	25

^{*}Основной продукт превращения щавелевая кислота (на долю минорных продуктов приходится не более 1%).

лов. Однако почему эти два фактора оказывают разнонаправленное влияние на перфторалкан и перфторбензол, пока неясно.

Мольная доля растворенного O_2 в перфторалканах всего лишь в 2–3 раза выше, чем в углеводородах (0,0034 для *н*-перфторгептана и 0,00194 для *н*-гептана) [4]. С учетом этого можно предположить, что при активации растворенного кислорода в перфторалканах в качестве действу-

ющего начала выступают именно фторсодержащие компоненты.

Таким образом, впервые показано, что превращение диоксида углерода в водных эмульсиях перфторанов приводит к образованию смеси щавелевой кислоты и других кислородсодержащих продуктов более сложного состава, однако механизм этих превращений остается дискуссионным и требует дальнейшего изучения.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Гальченко В.Ф.* // Метанотрофные бактерии. М., 2001.
- Разумовский С.Д., Ефременко Е.Н., Сенько О.В., Махлис Т.А., Быховский М.Я., Подмастерьев В.В., Варфоломеев С.Д. // Изв. Акад. наук. 2008. Сер. хим. № 8. С. 1603. [Russian Chemical Bulletin. 2008. Vol. 57. N 8. P. 1603].
- 3. Barthel-Rosa L.P, Gladysz J.A. // Coordination Chemistry Reviews. 1999. Vol. 190–192. P. 587; Wolf E., Koten G., Deelmande B.-J. // Chem. Soc. Rev. 1999. Vol. 28. P. 37.
- 4. *Асланов Л.А.*, *Захаров М.А.*, *Абрамычева Н.Л.* // Ионные жидкости в ряду растворителей. М., 2005.

- 5. *Бучаченко А.Л.* // Усп. хим. 1985. Т. 54. Вып. 2. С. 195. [Usp. khim. 1985. Vol. 54. N 2. P. 195].
- Бонне Д., Фаш Э., Симонато Ж.-П. Пат. Способ окисления углеводородов в кислоты / RU № 2274633. 2006
- 7. Якимова И.Ю. Низкотемпературная активация молекулярного кислорода в экологически безопасных процессах окисления: дис. ... канд. хим. наук. Рос. гос. ун-т нефти и газа им. И.М. Губкина. М., 2007.
- 8. Вишнецкая М.В., Иванова М.С., Будынина Е.М., Мельников М.Я. // Журн. физ. химии. 2011. Т. 85. № 12. С. 2287 [Russian Journal of Physical Chemistry A. 2011. Vol. 85. N 12. P. 2287].

- 9. Вишнецкая М.В., Иванова М.С., Солкан В.Н., Жидомиров Г.М., Мельников М.Я. // Журн. физ. химии. 2012. T. 86. № 5. C. 990 [Russian Journal of Physical Chemistry A. 2012. Vol. 86. N 5. P. 889].
- 10. Солкан В.Н., Жидомиров Г.М., Мельников М.Я. // Журн. хим. физика. 2010. Т. 29. № 10. С. 14 [Russian Journal of Chem. Phys.B. 2010. Vol. 4. N 5. P. 705].
- 11. Вишнецкая М.В., Васин А.В., Солкан В.Н., Жидомиров Г.М., Мельников М.Я. // Журн. физ. химии. 2010. Т. 84.
- № 11. C. 2089 [Russian Journal of Physical Chemistry A. 2010. Vol. 84. N 11. P. 1905].
- Solkan V. // Conf. on Current Trends in Computational Chemistry 2012. p 108. November 9–10. 2012. Jackson. Miss. USA. Book of Abstracts.
- 13. Вишнецкая М.В., Иванова М.С., Свичкарёв О.М., Будынина Е.М., Мельников М.Я. // Журн. физ. химии. 2013. Т. 87. № 5. С. 653 [Russian Journal of Physical Chemistry A. 2013. Vol. 87. № 5. Р. 742].

Поступила в редакцию 10.04.18

TRANSFORMATION OF CO_2 IN TWO-PHASE SYSTEMS C_8F_{18} -H2O AND C_6F_6 -H₂O

M.V. Vishnetskaya¹*, M.S. Ivanova¹, M.Ya. Mel'Nikov²

(¹ Gubkin Russian State University of oil and gas; ² Division of Chemical Kinetics Chemistry Department, M.V. Lomonosov Moscow State University; *e-mail: mvvishnetskaya@mail.ru)

The transformation of carbon dioxide in water emulsions perftorana in the presence of oxygen leads to the formation of a mixture of oxalic acid and a minor set of organic matter of C_4 – C_8 . The maximum CO_2 uptake occurs in the emulsion with a volume ratio of C_8F_{18} : $H_2O=1:0,42$ at a pH of 2.4; the output of $H_2C_2O_4$ is 11% mol.

Key words: molecular oxygen, activation, CO₂, oxalic acid, perfluorooctane, perfluorobenzene, emulsion, acidity.

Сведения об авторах: Вишнецкая Марина Викторовна — профессор кафедры промышленной экологии РГУ нефти и газа им. И.М. Губкина, докт. хим. наук (mvvishnetskaya@mail.ru); Мельников Михаил Яковлевич — профессор МГУ имени М.В. Ломоносова, химический факультет, докт. хим. наук (melnikov46@mail.ru); Иванова Мария Сергеевна — ассистент кафедры промышленной экологии РГУ нефти и газа им. И.М. Губкина, канд. хим. наук (IMS.06@mail.ru).