УДК 543.257.2:543.852

САЛИЦИЛАТ-СЕЛЕКТИВНЫЕ ЭЛЕКТРОДЫ НА ОСНОВЕ КОМПЛЕКСОВ ОЛОВА (IV) С ОРГАНИЧЕСКИМИ ЛИГАНДАМИ

Ю. Н. Бликова, Н. Н. Лейзерович, Н. А. Пасекова, Н. В. Шведене

(кафедра аналитической химии)

Для определения салицилат-иона предложены ионоселективные электроды с пластифицированной мембраной на основе комплексов олова (IV) с 8-оксихинолином и тетракис(*трет*-бутил)-фталоцианином. Использование липофильных металлокомплексных переносчиков, способных к специфическим взаимодействиям с определяемыми анионами, позволяет обеспечить высокую избирательность и селективность и получить электроды с хорошими характеристиками. Электрод на основе фталоцианата применен для определения ацетилсалициловой кислоты в лекарственном препарате.

Использование металлоорганических соединений и металлокомплексов в составе пластифицированных мембран – перспективный подход к созданию ионоселективных электродов (ИСЭ). Координация целевого иона атомом металла лежит в основе механизма селективного отклика электрода, а наблюдаемая потенциометрическая селективность определяется, в первую очередь, устойчивостью образующегося комплекса. Дополнительно варьировать селективность связывания можно заменой окружения металла в исходном комплексе-переносчике.

В качестве мембранных переносчиков в анион-селективных ИСЭ широко используют металлокомплексы порфиринов. При помощи порфиринатов Co(III), Sn(IV), Mn(III), Mo(IV), In(III), Ga(III), Tl(III) достигается селективность, отличная от селективности классических анионообменников [1–4]. Металлокомплексы фталоцианинов, подобные порфиринатам, также могут оказаться удачными мембранно-активными реагентами. Они характеризуются высокой химической устойчивостью, легко синтезируются. Однако пока описаны лишь единичные примеры пластифицированных ИСЭ на основе фталоцианатов Co(II), Co(III), Sn(IV) [5–7].

В качестве иона металла в анион-селективном переносчике особенно перспективным нам представляется ион олова (IV). Оловоорганические соединения известны как эффективные экстрагенты и мембранные ионофоры для извлечения и ионометрического определения кислородсодержащих анионов [8–11]. Однако комплексы Sn(IV) без связи металл—углерод в этом качестве почти не исследованы. Между тем они доступны и открывают широкие возможности варьирования структуры и свойств металлсодержащего реагента.

Настоящая работа посвящена изучению комплексов олова (IV) с N,O- и N,N-лигандами — 8-оксихинолином и тетракис-(*терет*-бутил)фталоцианином в качестве активных компонентов мембран салицилат-селективных электродов.

Экспериментальная часть

Реагенты и растворы. Использованный в работе фталоцианат олова (IV) синтезирован на кафедре органической химии химического факультета МГУ докт. хим. наук

Л. Г. Томиловой с сотр. (табл. 1). Чистоту полученного соединения устанавливали с помощью методов ТСХ, ИК-, ЯМР- и масс-спектрометрически. В качестве пластифицирующих агентов применяли о-нитрофенилоктиловый эфир (o-HФOЭ, Fluka), диэтилсебацинат (ДЭС, Akros Organics), диоктилфталат (ДОФ, Aldrich), трибутилфосфат (ТБФ). Тетрафенилборат натрия (ТФБNa, Aldrich) использовали как анионогенную добавку в мембранную композицию. Полимерной основой мембран служил поливинилхлорид (ПВХ) марки С-70. Тетрагидрофуран получен от фирмы Merck. Растворы салицилата натрия и мешающих органических и неорганических анионов для изучения потенциометрической селективности готовили растворением соответствующей соли («ч.д.а») в дистиллированной воде. Необходимые значения рН создавали с помощью твердого LiOH и растворов H₂SO₄ различной концентрации.

Комплекс олова с 8-оксихинолином в присутствии трихлоруксусной кислоты (табл. 1) получен экстракционным методом по методике [12]. Об экстракции комплекса олова (IV) с 8-оксихинолином судили по спектрам поглощения, идентичным приведенным в работе [13]. Экстракцию проводили в делительных воронках с притертыми пробками. Органическая фаза содержала 20 мл 0,1 М раствора 8-оксихинолина в хлороформе; водная фаза – 1 мл сульфата олова, 10 мл трихлоруксусной кислоты и 9 мл воды. Время контакта фаз составляло 1 ч. Исходный раствор олова (~0,01 М) готовили растворением 100 мг металлического олова в смеси 5 мл концентрированной серной кислоты с 4 г сульфата аммония при нагревании в стакане, накрытом часовым стеклом, на песчаной бане. К охлажденному раствору в фарфоровой чашке добавляли 40 мл дистиллированной воды, 1 г винной кислоты и 45 мл концентрированной серной кислоты. Полученный раствор переносили в колбу на 100 мл и доводили до метки дистиллированной водой. Концентрация серной кислоты в исходном растворе составляла 0,5 М. Исходные растворы 8-оксихинолина (0,1 М) и трихлоруксусной кислоты (0,2 М) готовили растворением точных навесок в хлороформе и воде соответственно. Рабочие концентрации для растворов Sn(IV), 8-оксихинолина

и трихлоруксусной кислоты составляли $\sim 5 \cdot 10^{-4}$ M, 0,1 M, 0,1 M соответственно.

Пленочные пластифицированные ПВХ мембраны готовили по известной методике [14] растворением электродноактивного компонента, ПВХ и пластификатора в свежеперегнанном тетрагидрофуране при перемешивании. Компоненты брали в следующем отношении (в мас.%): реагент – 1; 5, пластификатор – 66; 63,3, ПВХ – 33; 31,7. В тех случаях, когда мембрана содержала добавку, ее количество составляло 10 мол.% от содержания реагента. Была предпринята попытка получить ионофор *in situ* в результате кондиционирования мембраны, содержащей 8-оксихинолин, в растворе олова и трихлоруксусной кислоты. Кроме указанных мембран для сравнения приготовили мембрану на основе классического анионообменника - соли триоктилметиламмония (ТОМА). Перед началом измерений мембраны выдерживали в 0,01 М растворе салицилат-иона в течение 24 ч.

Аппаратура и техника эксперимента. При измерении ЭДС гальванического элемента

Ag/AgCl, KCl _(нас) исследуемый раствор мембрана раствор салицилата натрия, 0,01М | AgCl/Ag

применяли иономер И-130. Контроль рН осуществляли на рН-метре рН-121 с использованием стеклянного электрода ЭСЛ-63-07. В качестве внешнего электрода сравнения использовали хлоридсеребряный электрод марки ЭВЛ-1М3. Измерения проводили при температуре $20\pm2^{\circ}$. Спектры поглощения снимали на спектрофотометре *«SHIMADZU UV-1601»*.

Значения коэффициентов потенциометрической селективности ($K_{i/j}^{\text{pot}}$) ИСЭ оценивали методом биионных потенциалов при концентрации основного и мешающего ионов $1.0 \times 10^{-2} \text{M}$ [15].

Таблица 1

Структуры исследованных в работе комплексов олова (IV) с органическими лигандами

Название реагента	Структурная формула	Обозначение	
Тетракис(т-бутил)- фталоцианат олова (IV) дихлорид	CL N N N N N N N N N N N N N N N N N N N	Pc¹SnCl ₂	
Комплекс Sn(IV) с 8-оксихинолином	$Sn(Ox)_2(CCl_3COO)_2$, где $Ox =$	Sn(Ox) ₂ (CCl ₃ COO) ₂	

Таблица 2

Электрохимические свойства мембран на основе комплексов Sn(IV) с различными лигандами в растворах салицилата натрия (pH 6,2; n=6; P=0.95)

ЭАК	Крутизна электродной функции, мВ/дек	Интервал линейности, моль/л	Предел обнаружения, c_{\min} , моль/л
Препаративно выделеный комплекс Sn(IV) с 8-оксихинолином	44±1	5·10 ⁴ – 10 ¹	2·10 4
Комплекс Sn(IV) с 8-оксихинолином получен в результате кондиционирования	48±10	5·10 ⁴ – 10 ¹	4·10 4
Тетракис(т-бутил)- фталоцианат Sn(IV)	53±2	8·10 ⁵ – 10 ¹	1,3·10 5

pH-функции салицилат-селективных мембран получены титрованием 0,01M раствора $\rm H_2SO_4$, содержащего 0,01M $\rm Na_2SO_4$ и $\rm 1\cdot10^{-3}M$ SalNa, раствором NaOH, также содержащим 1 раствор $\rm 10^{-3}M$ SalNa для предотвращения разбавления раствора с одновременным измерением pH и потенциала электрода.

Результаты и их обсуждение

Ответи мембран на основе различных переносчиков в растворе салицилата натрия. В табл. 2 приведены потенциометрические характеристики мембран, содержащих различные переносчики (пластификатор – о-нитрофенилоктиловый эфир, 5 мас.%) в растворах салицилата натрия. Электроды демонстрируют близкий к нерстовскому отклик в широком диапазоне концентраций. Равновесный потенциал каждого ИСЭ в стандартных растворах салицилата фиксировали в условиях, когда дрейф потенцила составлял не более 1 мВ/мин.

Отклик к салицилату показывают как мембрана на основе препаративно выделенного комплекса олова с оксихинолином, так и мембрана на основе комплекса, полученного *in situ* (мембрана, содержащая 8-оксихинолин и выдержанная в растворе Sn(IV) и трихлоруксусной кислоты). Однако воспроизводимость мембранного потенциала в случае препаративно выделенного комплекса существенно лучше, а предел обнаружения ниже. Еще лучшие характеристики демонстрирует мембрана на основе препаративно полученного фталоцианата: крутизна электродной функции близка к теоретическому значению (53±2 мВ/дек), предел обнаружения 1,3·10⁻⁵ М.

Селективность. Результаты изучения потенциометрической селективности представлены в табл. 3. В отличие от мембраны, содержащей 5% классического анионообменника — триоктилметилааммония хлорида, все мембраны на основе комплексов олова (IV) показывают значительное отклонение от ряда селективности, соответствующего липофильности анионов [16]. Следует отметить, что

Таблица 3 Коэффициенты селективности к салицилат-иону мембран на основе комплексов Sn(IV) с различными лигандами

	$K^{ m pot}_{ m Sal/X} \cdot 10^2$			
Мешающий ион	Sn(Ox) ₂ (CCl ₃ COO) ₂ (препаративное выделение)	Sn(Ox) ₂ (CCl ₃ COO) ₂ (кондиционирование)	Pc¹SnCl ₂	TOMA
Салицилат	0	0	0	0
Сульфат	0,56	0,89	0,15	0,09
Цитрат	1,60	5,10	0,40	1,50
Гидрофосфат	13	36	2,88	0,70
Фторид	9	18	1,32	0,72
Лактат	14	36	1,48	0,80
Ацетат	27	73	1,45	1,86
Хлорид	5	8	2,95	0,80
Нитрит	7	21	4,27	1,78
Бромид	6	8	6	5,13
Бензоат	34	68	7,60	6,46
Нитрат	5	9	4,10	10
Иодид	16	14	14	120
Тиоционат	_	_	83	309
Перхлорат	180	180	178	2884

при расчете коэффициентов потенциометрической селективности, приведенных в табл. 4, использовали теоретическое значение крутизны электродной функции для однозарядного иона при 20° (58 мВ/дек). Такой расчет весьма условен для мембран, не проявляющих нернстовской обратимости в растворах салицилата. Тем не менее, по сравнению с мембраной на основе ТОМА, для мембран на основе комплексов олова с органическими лигандами отчетливо снижается мешающее влияние гидрофобных анионов, таких, как ClO₄-, SCN-, Г. Это указывает на реализацию специфических, отличных от чисто электростатических взаимодействий анионов с переносчиком. Можно также отметить значительное влияние таких ионов, как лактат, ацетат и бензоат при использовании в качестве комплекса Sn(IV) с 8-оксихинолином; по-видимому, оксофильный характер олова и способность к лигандному обмену обеспечивает чувствительность к разнообразным анионам карбоновых кислот.

Изменение концентрации активного компонента мембраны. Представленные в табл. 2, 3 данные показывают, что наилучшие параметры отклика и высокую селективность к салицилату проявляет мембрана на основе $\mathrm{Pc}^{\mathrm{t}}\mathrm{SnCl}_{2}$. Этот переносчик и исследовали в дальнейшем. Нами предпринята попытка уменьшить содержание реагента в мембране до 1%: крутизна электродной функции в растворах салицилата значительно

снижается до (45±1 мВ/дек), а предел обнаружения существенно повышется ($C_{\min} = 8 \cdot 10^{-5} \mathrm{M}$); мешающее действие липофильных анионов значительно усиливается (рис. 1).

Влияние мембранного растворителя. Хорошо известно, что мембранный растворитель-пластификатор в значительной степени определяет все электрохимические характеристики (в том числе селективность) ПВХ-пластифицированных мембран, причем природа влияния может иметь, по крайней мере, двоякий характер. Во-первых, большинство используемых пластификаторов не инертны и могут в ряде случаев рассматриваться как независимый

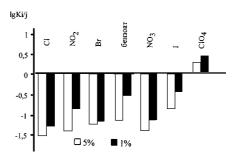


Рис. 1. Коэффициенты селективности к салицилат-иону мембран с разным содержанием фталоцианата олова (IV)

и конкурирующий с активным компонентом переносчик. Во-вторых, химические и физические свойства мембранного растворителя влияют на состояние активного компонента в фазе мембраны. Поэтому выбрать оптимальный растворитель на основе первых «принципов» нелегко (если вообще возможно); необходимо опробовать различные варианты.

Мы исследовали мембраны, пластифицированные различными растворителями — *о*-нитрофенилоктиловым эфиром, диэтилсебацинатом, диоктилфталатом, трибутилфосфатом.

При использовании о-НФОЭ и ДЭС параметры отклика электродов в растворах салицилата близки. Тем не менее, в случае ДЭС предел обнаружения выше (C_{\min} = $3.2 \cdot 10^{-5}$). Использование ДОФ требует долгого кондиционирования мембраны, стабильный потенциометрический отклик получен только после выдерживания электрода в течение недели в 0,01 М растворе салицилата натрия. В дальнейшем электродные характеристики быстро ухудшаются. Своеобразное поведение мембраны на основе ТБФ наблюдается в области больших концентраций салицилата $(10^{-2} - 10^{-1})$, где крутизна электродной функции снижается. В литературе отмечали высокую способность триалкилфосфатов к сольватации катионов из-за присутствия в их молекуле фосфильной группы Р=О, включающей электронодонорный атом кислорода с неподеленной парой электронов. По-видимому, при высокой концентрации

Таблица 4 Коэффициенты селективности к салицилат-иону мембран на основе фталоцианата олова (IV) (5% реагента) с разными пластификаторами

	$K^{ m pot}_{ m Sal/X} \cdot 10^2$		
Мешающий ион	Pc¹SnCl ₂		
	о-НФОЭ	дэс	
Салицилат	0	0	
Сульфат	2,83	2,49	
Дигидрофосфат	1,54	1,15	
Фторид	1,88	1,37	
Лактат	1,83	1,29	
Ацетат	1,84	1,10	
Хлорид	1,53	1,46	
Нитрит	1,37	1,14	
Бромид	1,22	1,32	
Бензоат	1,12	0,78	
Нитрат	1,39	1,34	
Иодид	0,85	0,95	
Тиоцианат	0,08	0,53	
Перхлорат	0,25	0,32	

SalNa сольватация катиона мембранным растворителем конкурирует с процессом комплексообразования между салицилатом и активным реагентом мембраны, вследствие чего анионный отклик ухудшается.

Поскольку лишь для мембран, пластифицированных o-НФОЭ и ДЭС, достигается близкий к теоретическому отклик к салицилату, мы сравнили селективность мембран, приготовленных на их основе (табл. 4). Коэффициенты селективности в большинстве случаев значительно ниже при использовании o-НФОЭ, однако в присутствии гидрофобных ионов — ClO_4^- , SCN^- , I^- именно ДЭС обеспечивает большую селективность мембраны к салицилату.

Влияние липофильных ионогенных добавок. Металлокомплексы порфиринов и фталоцианинов в зависимости от степени окисления металла и его координационного числа могут функционировать в мембране ИСЭ как нейтральные или как заряженные переносчики. Если координация целевого иона осуществляется за счет свободных координационных мест атома металла и приводит к образованию отрицательно заряженного комплекса, то исходный реагент выступает в мембране как нейтральный переносчик. В случае, когда координация целевого аниона осуществляется за счет взаимодействия с заряженным металлокомплексом, образование которого возможно при диссоциации исходного комплекса в фазе мембраны, имеет место механизм заряженного переносчика. Однако нельзя полностью отбросить и более простой вариант лигандного обмена аксиально координированного иона на целевой анион без предварительной диссоциации исходного комплекса.

Важно, что введение различных ионогенных добавок может значительно влиять на параметры отклика электрода и селективность к потенциалопределяющему иону. Детальное теоретическое рассмотрение такого влияния проведено в работах [17–19].

Пластифицированные диэтилсебацинатом и o-нитрофенилоктиловым эфиром мембраны, содержащие 5% Pc^tSnCl_2 , демонстрируют значительное улучшение селективности к салицилату при добавлении 10 мол.% тетрафенилбората натрия (рис. 2).

Отметим, что, видимо, ион металла в Pc SnCl₂ координационно насыщен. Координационное число олова равно шести; дополнительное присоединение анионов к олову, окруженному в экваториальной плоскости четырьмя атомами азота макроцикла и аксиально координирующему два хлорид-иона, маловероятно. Вероятен механизм заряженного переносчика, подразумевающий обмен аксиальных хлорид-ионов на целевой анион. Данные, связанные с изучением влияния анионогенной добавки, подтверждают это предположение. Однако в поведении мембран, приготовленных с использованием различных растворителей, есть некоторые различия. Прежде всего, добавка тетрафенилбората натрия в мембрану, пластифицированную о-НФОЭ, приводит к сверхтеоретической крутизне электродной функции (86±2 мВ/дек), в то время как в случае

ДЭС этого не наблюдается. В литературе отмечали подобное резкое увеличение абсолютного значения анионного отклика при добавлении тетрафенилбората калия в мембраны, содержащие порфиринаты Sn(IV) и In(III), однако природа явления осталась неясной. Анионная добавка ухудшает в обоих случаях предел обнаружения, который составил $5\cdot10^{-5}$ М для o-НФОЭ и $1\cdot10^{-4}$ М для ДЭС. Это, по-видимому, связано с тем, что при малых концентрациях салицилат-иона анионная добавка проявляет свойства катионообменника, и это приводит к ухудшению анионного отклика мембраны.

Рис. 2. иллюстрирует, как присутствие тетрафенилбората увеличивает в целом селективность мембраны к карбоксилат-содержащим соединениям — усиливается мешающее действие ацетата, лактата, бензоата. Особенно заметен этот эффект на менее полярном пластификаторе — диэтилсебацинате.

Влияние рН. Для мембран на основе $Pc^{t}SnCl_{2}$, пластифицированных o-НФОЭ и ДЭС изучены зависимости потенциала ИСЭ от кислотности исследуемого раствора. Кривые, полученные в 0,01М растворе салицилата натрия, представлены на рис. 3. Существенных различий в рН-области функционирования мембран не наблюдается. В интервале рН < 3 увеличивается мольная доля недиссоциированной формы салициловой кислоты, что объясняет повышение потенциала анион — селективного электрода. В щелочной области (рН > 10) возможно протекание конкурирующей реакции комплексообразования ионов гидроксила с активным компонентом мембраны. Все полученные мембраны позволяют проводить определения салицилат-иона в широком диапазоне рН (4,5–9,5).

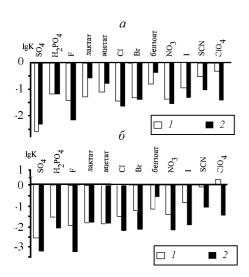


Рис. 2. Влияние липофильной анионной добавки на потенциометрическую селективность к салицилат-иону мембран на основе фталоцианата олова (IV) на разных пластификаторах: $a: I - \text{Pc}^t \text{SnCl}_2 - \text{ДЭС}, 2 - \text{Pc}^t \text{SnCl}_2 - \text{ДЭС} - \text{ТФБ};$ 6: $I - \text{Pc}^t \text{SnCl}_2 - o - \text{HΦOO}, 2 - \text{Pc}^t \text{SnCl}_2 - o - \text{HΦOO} - \text{TΦБ}$

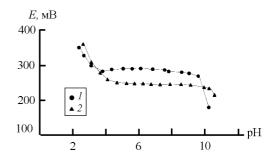


Рис. 3. рН-Функции мембран на основе фталоцианата олова (IV) (5%) на разных пластификаторах: *I* – Pc^tSnCl₂ – ДЭС, *2* – Pc^tSnCl₂ – *o*-НФОЭ

Практическое применение разработанного ИСЭ. Установлено, что в растворах ацетилсалицилата ИСЭ на основе $\operatorname{Pc}^t \operatorname{SnCl}_2$ (5% реагента, пластификатор – ДЭС) проявляет потенциометрический отклик; крутизна электродной функции близка к теоретическому значению (57±5) мВ/дек, $C_{\min} = 6,3\cdot 10^{-5} \mathrm{M}$. Методом «введено—найдено» проверяли правильность и воспроизводимость ионометрического определения ацетилсалициловой кислоты. Полученные результаты свидетельствуют об отсутствии систематической погрешности, относительное стандартное отклонение не превышает 0,05. Разработанный ИСЭ использован для прямого потенциометрического определения ацетилсалицилата в лекарственном препарате методом двойной стандартной добавки [15].

В качестве объекта анализа использовали растворимые в воде таблетки «Аспирин Упса с витамином С», содержащие 0,33 г ацетилсалициловой кислоты, 0,2 г аскорбиновой кислоты на одну таблетку $(3,4967 \ \Gamma)$.

Методика определения. Таблетку «Аспирин Упса с витамином С», измельчали, навеску массой 0,1388 г растворяли в 100 мл буферного раствора рН 5,5. Для выполнения определения отбирали пипеткой 10 мл приготовленного раствора и измеряли электродный потенциал (E_1) . Затем дважды делали добавки раствора ацетилсалицилата натрия при непрерывном перемешивании магнитной мешалкой, вводя по 0,1 мл 0,1 М раствора, и после каждой добавки измеряли электродный потенциал (E_2 , E_3). Используя табличные данные, связывающие величину параметра $R = E_3 - E_1/E_2 - E_1$ с соотношением C_x/C , находили концентрацию C_{x} в анализируемой пробе. В результате определения найдено (0,32±0,06 г) ацетилсалицилата, что хорошо согласуется с рецептурными данными; $S_{\nu} = 0.08$. Полученные результаты свидетельствуют об отсутствии систематической погрешности определения ацетилсалицилата при использовании разработанного ИСЭ.

Таким образом, результаты работы подтверждают перспективность использования в качестве электродоактивных веществ ИСЭ комплексов олова (IV) с органичесими лигандами. Электроды на их основе пригодны для определения салицилата и ацетилсалицилата в лекарственных препаратах.

Авторы выражают благодарность канд. хим. наук И. В. Плетневу за полезные обсуждения и РФФИ за финансовую поддержку (проект 99-03-32826).

СПИСОК ЛИТЕРАТУРЫ

- Chaniotakis N., Park S., Meyerhoff M. // Anal.Chem. 1989. 61.
 P. 566.
- 2. Abe H., Kokufuta E. // Bull.Chem. Soc. Jpn. 1990. 63. P. 1360.
- 3. Park S., Matuszewski W., Meyerhoff M., Liu Y., Kadisb K. // Electroanalysis. 1991. 3. P. 909.
- Gao D., Gu J., Yu R., Zheng G. // Anal. Chim. Acta. 1995. 302.
 P. 263.
- 5. Li J., Pang X., Yu R. // Anal. Chim. Acta. 1994. 297. P. 437.
- 6. Li J., Pang X., Gao D., Yu R. // Talanta. 1995. 42. P. 1775.
- 7. Шведене Н.В., Бельченко Н.Н., Старушко Н.А. и др. // Вестн. Моск. ун-та. Сер. 2. Химия. 1999. Р. 160.
- 8. Теория и практика экстракционных методов. / Под ред. И.П. Алимарина М., 1985.
- 9. Lui. D., Chen W.G., Shen G.L. // Analyst. 1996. 121. P. 1495.
- Li Z.Q., Song X.P., Shen G.Li., Yu R.Q. // Anal. Lett. 1998. 31.
 № 9. P. 1473.

- 11. Li Z.Q., Ruo Y., Min Y. // Talanta. 1998. 46. P. 943.
- 12. *Петрухин О.М., Золотов Ю.А., Изосенкова Л.А.* // Радиохимия. 1969. **11.** № 2. С. 139.
- 13. Гинсбург Л.Б., Шкробот Э.П. // Зав. Лаб. 1957. **23.** № 5 С. 527.
- Moody G.J., Oke R.B., Thomas J.D. // Analyst. 1970. 53.
 P. 879.
- Камман К. Работа с ионоселективными электродами. М., 1980.
- 16. Feng D. // Ion-selective Electrode Rev. 1987. 9. P. 95.
- 17. Huser M., Morf W.E., Fluri K., Seiler K., Schulthess P., Simon W. // Helv. Chim. Acta. 1990. 73. P. 1481.
- 18. Bakker E., Malinowska E., Schiller R. D., Meyerhoff M.E. // Talanta. 1994. **41.** № 6. P. 881.
- Schaller U., Bakker E., Spichiger U.E., Pretsch E. // Anal. Chem. 1994. 66. P. 391.

Поступила в редакцию 21.12.99