Сероорганические соединения. Лекция 5.

$$S=N$$

• Сульфимиды
$$R_2S^{IV}=N-R$$

• Сульфоксимиды
$$R_2S^{VI}(O)=N-R$$

• Сульфодиимины
$$R_2S^{VI}(=NR)_2$$

• Сульфинил- и сульфониламины

$$RN=S^{IV}=O$$
 и $RN=S^{VI}(=O)_2$

• Сульфамовые кислоты

$$R_2N-S^{VI}O_2-OH$$

S-N

Сульфимиды

$$R-S-R^{T}$$
 $R^{2}=H$, Alk, Ar, Hal, Ac
 NR^{2}

Пирамида, устойчивая к инверсии => энантиомеры

Часто - гидрохлориды

Синтез из сульфоксидов («S=O реагирует как C=O»)

$$R_2S=O \xrightarrow{E^+} R_2\dot{S}-OE \xrightarrow{R^1NH_2} R_2S=NR^1$$

$$Me_2S=O \xrightarrow{SO_3} Me_2\dot{S}-OSO_3^- \xrightarrow{ArNH_2} Me_2S=NAr$$

 $E^+ = H^+, BF_3$, уксусный ангидрид, SO_3

Синтез из сульфидов

 Из хлорамина Т и сульфидов (наиболее известны – тозильные производные, а также производные с другими акцепторными группами при N)

$$R_{2}S + Me \longrightarrow SO_{2}NCINa \longrightarrow R_{2}S = NSO_{2} \longrightarrow Me$$

TsNClNa + H₂O

→ TsNHCl + NaOH

$$R_2S + TsNHC1 \xrightarrow{Megnehho} R_2SC1 + NHTs$$

$$H_2O$$
 CI_N Na^{\dagger}
 $O=S=O$
 H_2O
 CI_N H_2O
 $O=S=O$
 H_2O
 CH_3
 CH_3

$$R_2 \stackrel{+}{S}C1 + \stackrel{-}{NHTs} \stackrel{-}{\longrightarrow} R_2 \stackrel{-}{S}=NTs + HC1$$
 $R_2 \stackrel{+}{S}C1 + \stackrel{-}{O}H \longrightarrow R_2 \stackrel{-}{S}=O + HC1$

Синтез «свободных» сульфимидов

$$R_2S + Cl_2 \longrightarrow R_2SCl_2 \xrightarrow{1. NH_3} R_2S = NH$$

Реакции

• Алкилирование по азоту и гидролиз до сульфоксидов

$$R = Bu-mpem$$

• Окисление до сульфоксимидов

$$R_2S=NTs+H_2O_2$$
 $\xrightarrow{OH, MeOH}$
 $R_2S=NTs$

Реакции «как сульфоксиды»

• Пиролиз до алкенов (как сульфоксиды!)

• Сигматропные перегруппировки (как сульфенат-сульфоксидная)

Сульфоксимиды

Похожи на сульфоны.

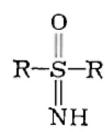
Ho:

Сера может быть хиральна!

Получение сульфоксимидов

• Из сульфоксидов и азида натрия

$$R-S-R \xrightarrow{NaN_3, H_2SO_4} \begin{bmatrix} O \\ H_2SO_4 \end{bmatrix} \xrightarrow{R_2S: +H_2N-N_2} \xrightarrow{-N_2, -H} R-S-R$$


$$(4)$$

В сильнокислых условиях реакции часто происходит разрыв связи S-C, если отщепляющиеся алкильные группы образуют устойчивые карбокатионы, поэтому этот метод нельзя использовать для синтеза S-mpem-алкил-, S-бензил, S-аллил- и аналогичных сульфоксимидов

...и других аналогов нитренов

Реакции сульфоксимидов

 Реакции по неподеленной паре атома азота

• Кислотность α-водородных атомов

! Сульфимиды устойчивы, как и другие производные S(VI)!

Устойчивы к термолизу, гидролизу, окислению и восстановление

Алкилирование и ацилирование по атому N

O
$$Me_2S=NH$$
 $\xrightarrow{Et_3O^+} \ ^-BF_4$ $Me_2S-NHEt$ $^-BF_4$ $\xrightarrow{Na_2CO_3}$ $Me_2S=NEt$

O $Ph-S-Me+CH_2=CHCO_2Me$ $\xrightarrow{NaH\ (\kappa a \tau.)}$ $Ph-S-Me$ \parallel $N(CH_2)_2CO_2Me$

Галогенирование и металлирование по атому N

Стабилизированные карбанионы

$$R-C-R^1$$
 $\xrightarrow{(6)}$ $Ph-S-CH_2-C-R^1$ $\xrightarrow{I. \ Paзделение}$ $Me-C-R^1$ $\xrightarrow{I. \ Paзделение}$ $Me-C-R^1$ NMe R

Диимиды серы

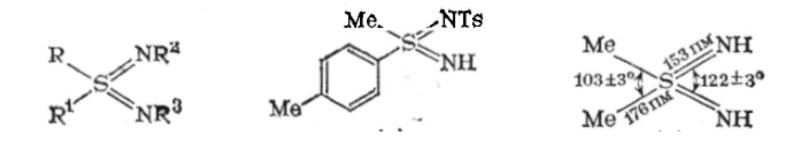
$$R-N=S=N-R$$

(cp. c
$$R-N=C=N-R$$
)

Получение

• $R-NH_2 + SHal_4 \rightarrow R-N=S=N-R (Hal = F, Cl)$

Свойства серных диимидов


• [4+2]-циклоприсоединение

• обессеривание

$$ArN=S=NAr \xrightarrow{Na} ArN=NAr$$

Сульфодиимиды

(аза-аналоги сульфонов)

Получение сульфодиимидов

$$R_2S + 2C1NH_2 + 2NH_3 \longrightarrow R_2S (=NH)_2 + 2NH_4C1$$

$$R_2S + 2\tau per$$
-BuOCl + 4NH₃ \longrightarrow $R_2S (=NH)_2 + 2\tau per$ -BuOH + 2NH₄Cl

$$Ph_2S$$
 $\xrightarrow{XЛОРАМИН T}$ $Ph_2S=NTS$ $\xrightarrow{1. H^+}$ $Ph_2S=NH$ $\xrightarrow{XЛОРАМИН T}$ NTS \downarrow \downarrow $ho^ Ph_2S=NH$ $\xrightarrow{1. H^+}$ $Ph_2S(=NH)_2$

Реакции сульфодиимидов

• Образование солей с протонными кислотами

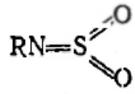
• Замещение атомов водорода имидных групп

$$R_{2}S \xrightarrow{NH} \xrightarrow{D_{2}O} R_{2}S \xrightarrow{ND} ND$$

$$R_{2}S \xrightarrow{NH} \xrightarrow{KNH_{2}} R_{2}S \xrightarrow{NK} \xrightarrow{KNH_{2}} R_{2}S \xrightarrow{NK} NK$$

 Замещение атомов водорода имидных групп (Si, P, S, Cэлектрофилы)

$$\begin{array}{c} \text{Me}_2S \overset{\text{NH}}{\longrightarrow} + (\text{Me}_2SiC1)_2\text{NH} \longrightarrow & \text{Me} & \text{N-SiMe}_2\\ \text{NH} & \text{Me} & \text{N-SiMe}_2\\ \text{NH} & \text{Me}_2S \overset{\text{NH}}{\longrightarrow} + \text{RPCI}_2 \longrightarrow & \text{Me} & \text{N-P-N} & \text{Me}\\ \text{NH} & \text{NSO}_2Me & \text{NH} & \text{NSO}_2Me \\ \text{R}_2S \overset{\text{NH}}{\longrightarrow} + \text{Me}SO_2C1 \longrightarrow & \text{R}_2S \overset{\text{N}}{\longrightarrow} & \text{NH} \\ \text{Et} & \text{NH} & \text{EtCH}(\text{CO}_2\text{Et})_2 \longrightarrow & \text{Et} & \text{NH} & \text{Et} \\ \text{Et} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} \\ \text{NH} & \text{NH} \\ \text{NH} & \text{NH} \\ \text{NH} & \text{NH} \\ \text{NH} & \text{NH} \\ \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH} & \text{NH} & \text{NH} \\ \text{NH} & \text{NH} & \text{NH}$$


Сульфиниламины и сульфониламины

RN=S=0

Имиды диоксида серы

Реакционноспособны

Аналогичны дииминам серы

Имиды триоксида серы

Известны только как интермедиаты реакций

Получение сульфиниламинов R-N=S^{IV}=O

• Peaкции SOCl₂ c R-NH₂ или «замаскированными» R-NH₂

$$RNH_2 + SOCl_2 \longrightarrow RN=S=O + 2HCl$$

 $R = Alk, Ar, ArSO_2$ и др.

$$MeCON(SiMe_3)_2 \xrightarrow{SOCl_2} MeCONSO + 2Me_3SiCl$$

• Пересульфинилирование

(равновесие сдвинуто в сторону менее основного амина!)

Peaкции R-N=S^{IV}=О

• Присоединение нуклеофилов по связи N=S:

• Циклоприсоединение:

$$RN=S=O+Y=Z \longrightarrow \begin{array}{c} Y-S=O \\ | & | \\ Z-N-R \end{array}$$

• Обмен иминогруппы:

$$RN=S=O+Y=Z \longrightarrow RN=Z+Y=S=O$$

Присоединение протонсодержащих и металлоорганических нуклеофилов.

Но: первичные амины → пересульфинилирование третичные амины и алкоксиды → диимины серы

Циклоприсоединение

$$\begin{array}{c}
 + \underset{SO}{\overset{NAr}{\parallel}} \longrightarrow \\
 + \underset{SO}{\overset{NAr}{\parallel}} \longrightarrow \\
 + \underset{SO}{\overset{NSO_2Ar}{\parallel}} \longrightarrow \\
 + \underset{S}{\overset{NSO_2Ar}{\parallel}} \longrightarrow \\
 + \underset{S}{\overset{N}{\overset{N}}} \longrightarrow \\
 + \underset{S}{\overset{N}{\overset{N}}} \longrightarrow \\
 + \underset{S}{\overset{N}{\overset{N}}} \longrightarrow \\
 + \underset{S}{\overset{N}} \longrightarrow \longrightarrow$$

Реакции с полярными двойными связями (обмен иминогруппы)

Получение сульфониламинов $R-N=S^{VI}(=O)_2$

- Обычно получают *in situ*
- Общий метод синтеза дегидрогалогенирование сульфамоилхлоридов

$$RNHSO_2C1 \longrightarrow [RN=SO_2] \xrightarrow{R_3^1N} RNSO_2NR_3^1$$

Реакции **R-N=S^{VI}(=O)**₂

• Высокоэлектрофильны (аналоги SO₃!)

Реакции с аминами (ср. с комплексами SO_3 -третичный амин):

EtNHSO₂C1
$$\xrightarrow{\text{Et}_3N}$$
 [EtN=SO₂] $\xrightarrow{\text{PhNH}_2}$ EtNHSO₂NHPh

$$MeO_2CNHSO_2C1 \xrightarrow{Et_3N} [MeO_2CN=SO_2] \xrightarrow{Et_3N} MeO_2CNSO_2NEt_3$$

Сульфамовые (сульфаминовые) кислоты и их производные

$$\begin{array}{ccc} \mathbf{R} & \mathbf{O} \\ \mathbf{N} - \mathbf{S} - \mathbf{OH} \\ \mathbf{R} & \mathbf{O} \end{array}$$

R₂NSO₂C1 RR¹NSO₂OR²

Получение сульфаминовых кислот

• Основной метод получения – реакция R_2NH или NH_3 с SO_3

$$\begin{array}{c|cccc} & CO_2H & & CO_2H \\ & | & C_5H_5NSO_3, \ NaOH & | \\ HOCH_2CHNH_2 & & & HOCH_2CHNHSO_3Na \end{array}$$

• Получение амидов – реакция аминов с SOCl₂ в пиридине.

Реакции сульфаминовых кислот

• Гидролиз до серной кислоты под действием кислот:

• Хлорангидриды – реагируют с замещением Cl («как Ac-Cl»):

• Доноры SO₃ для активации AdE реакций (см. лекции Н.В.Зыка)

$$\begin{array}{c} O \\ O \\ -S - OH \\ O \end{array} + Ar-S-NR_2 + \\ \hline ArS \\ O \\ \hline ArS \\ O \\ \hline \\ ArS \\ O \\ \hline \\ O \\ \hline \\ ArS \\ O \\ \hline \\ O$$