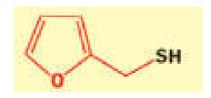
Сероорганические соединения.


Лекция 1

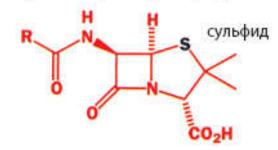
Сера – противоречивый элемент!

1. Запах!?



Запах и вкус кофе

Запах и вкус ананаса


Лекарства

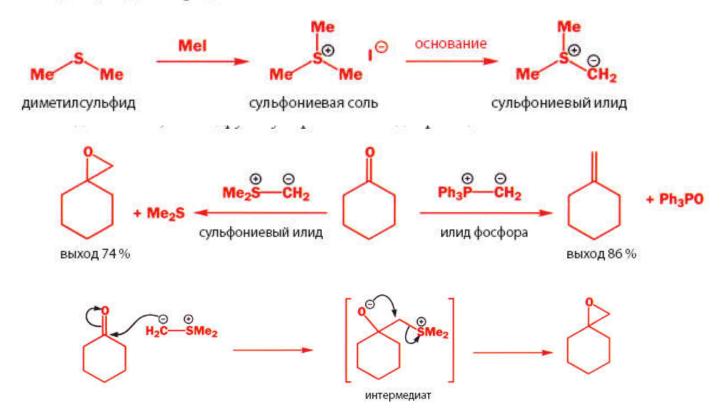
дапсон - водорастворимое пролекарство от проказы

глутатион: антиоксидант

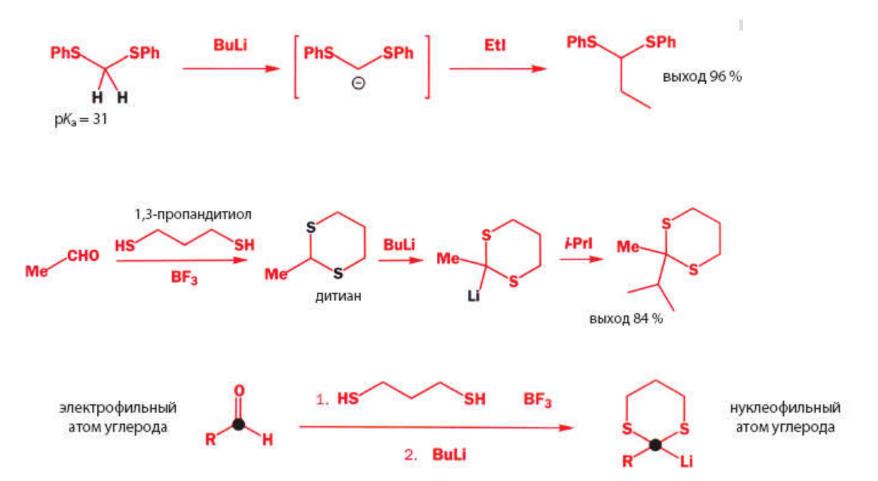
пироксикам (Pfitzer) или фелден

семейство пенициллиновых антибиотиков

Общий курс органической химии (вспомним 3 курс!)


1. S_N2-замещение

Не по карбонильной группе! Не основание! Тиолы (RSH) – более сильные кислоты, чем спирты (RO) но соединения серы – лучшие нуклеофилы по отношен к насыщенным углеродным атомам, чем соединения кислода (S_N2).


2. Серные илиды – синтез эпоксидов

Наиболее важные моменты в химии сульфониевых солей следующие.

- Сульфониевые соли являются электрофилами: при нуклеофильном замещении уходящей группой будет нейтральный сульфид.
- Сульфониевые соли можно депротонировать с образованием сульфониевых илидов (илидов серы).

3. Тиоацетали

«Умполунг»

3. Тиоацетали. Пример

Гидролиз тиоацеталей. Механизм.

Сера мягкая, кислород жесткий!

Гидролиз тиоацеталей. Альтернативы.

1. Окисление (вводим жесткий атом)

2. Алкилирование (делаем серу заряженной)

Основные сведения о сере

Таблица 46.1. Сера в периодическо	й таблице
(электроотрицател	тьность)

С	N	0	F
(2,5)	(3,0)	(3,5)	(4,0)
Si	P	S	Cl
(1,8)	(2,1)	(2,5)	(3,0)

Таблиц	a 46.2	Энеп	гии св	изей	кЛж	MORE
IGONINE	a 70.2.	Juch	I PIPE CE	mach,	DAME.	MOND

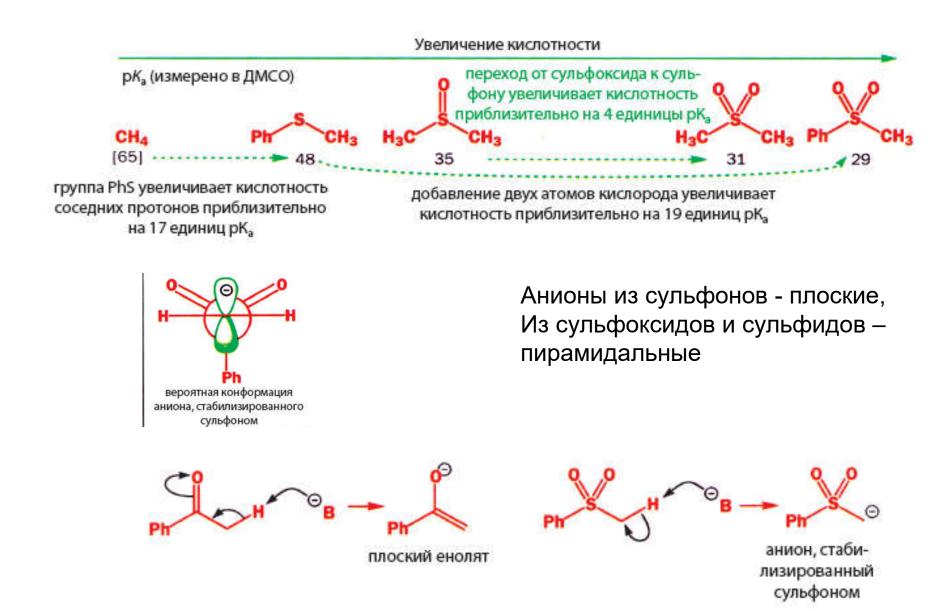
	X=C	X=H	X=F	X=S
C-X	376	418	452	362
S-X	362	346	384	301

Особенности серы

- Три степени окисления S(II), S(IV), S(VI) ср.
 с О
- Электроотрицательность близка к углероду ср. связи C=S и C=O
- Соединения со связью S-S и S-Hal устойчивы

 ср. с О-О и О-Hal
- Сера и электрофил, и нуклеофил!
- Сера стабилизирует <u>анион</u> в соседнем положении
- Сера стабилизирует <u>катион</u> в соседнем положении

Сера(II) – и электрофил, и нуклеофил!



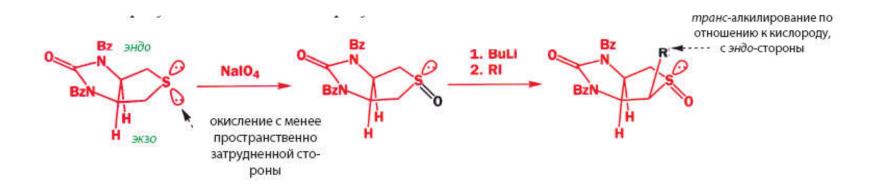
Cepa(IV) – хороший нуклеофил!

Амбидентный нуклеофил!

Сера стабилизирует анионный центр на соседнем атоме углерода!

Анионы, стабилизированные серой

Объяснение стабилизации аниона (S(II))



Анионы аллилсульфидов S(II))

Ho:

Анионы, стабилизированные сульфоксидом (S(IV)), в синтезе. Синтез биотина.

Стереохимия

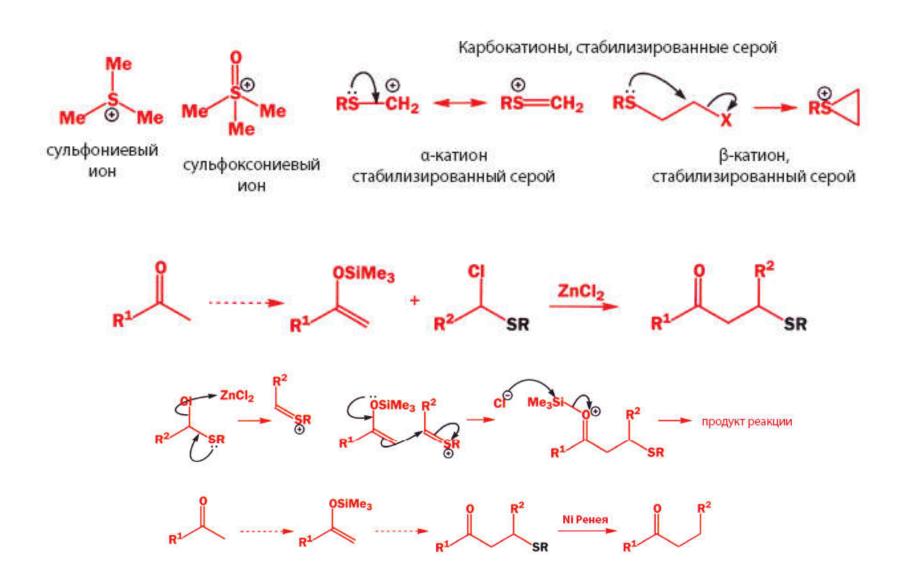
Анионы аллисульф<u>он</u>ов (S(VI))

$$MeO$$
 MeO MeO

Особенности:

- 1. Один продукт нет необходимости в хелатировании.
- 2. Более слабое основание!

Стабилизированные и настабилизированные сульфониевые илиды (разная региоселективность!)


Стабилизированный илид:

Объяснение:

Сульфоксониевые илиды («стабилизированные»)

Циклопропан, а не эпоксид!

А теперь – стабилизация катионов серой

Α как получить α-хлорсульфид?

Перегрупировка Пуммерера

Другой вариант («классический»):

Использование в синтезе

Стабилизация катиона в β-положении: реакции с нуклеофильным содействием серы

1. Иприт

2.

Особенности серы

- Три степени окисления S(II), S(IV), S(VI)
- Электроотрицательность близка к углероду
- Соединения со связью S-S и S-Hal устойчивы
- Сера и электрофил, и нуклеофил!
- Сера стабилизирует <u>анион</u> в соседнем положении
- Сера стабилизирует <u>катион</u> в соседнем положении

Тиокарбонильные соединения

Тиоальдегиды и тиокетоны – неустойчивы!

Производные тиокислот более устойчивы!

Тиоамиды