Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

Декан химического факультета, Чл.-корр.. РАН, профессор

/С.Н. Калмыков/

«22» мая 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Нетрадиционные подходы в катализе

Уровень высшего образования:

Магистратура

Направление подготовки (специальность):

04.04.01 Химия

Направленность (профиль) ОПОП:

Химия твердого тела

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №3 от 12.05.2020)

Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности 04.04.01 «Химия» (программа магистратуры), утвержденного приказом МГУ от 30 августа 2019 года № 1033.

Год (годы) приема на обучение 2020/2021

- 1. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.
- 2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников). Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП (в форме компетенция индикатор ЗУВ) указано в Общей характеристике ОПОП.

Компетенция	Индикатор достижения	Планируемые результаты обучения по
		дисциплине (модулю)
СПК-3.М. Способен планировать и осуще-	СПК-3.М.1. на основе информации о диа-	Знать: современные методы получения
ствлять синтез конструкционных и функ-	граммах состояния многокомпонентных	функциональных материалов,
циональных материалов с заданными	систем определяет условия синтеза конст-	используемых в катализе;
свойствами на основе представлений хи-	рукционных и функциональных материа-	Уметь : на основе теоретических знаний о
мической термодинамики и кинетики,	лов с определенными эксплуатационными	современных высокоэффективных
прогнозировать и оценивать их поведе-	характеристиками.	каталитических материалах, определяет
ние при воздействии различных эксплуа-	СПК-3.М.3. обоснованно выбирает методы	условия синтеза катализаторов с заранее
тационных факторов	химического модифицирования твердо-	заданными свойствами
	тельных материалов с целью оптимизации	Владеть: методами химической
	их функциональных свойств и защиты от	модификации каталитических систем с
	коррозионных разрушений	целью повышения их каталитической
		активности

- 3. Объем дисциплины (модуля) составляет 2 зачетных единицы, всего 72 часа, из которых 42 часа составляет контактная работа студента с преподавателем (19 часов занятия лекционного типа, 17 часов занятия семинарского типа, 2 часа групповые консультации, 2 часа текущий контроль успеваемости, 2 часа промежуточный контроль успеваемости), 30 часов составляет самостоятельная работа учащегося.
- 4. Входные требования для освоения дисциплины (модуля), предварительные условия.

Обучающийся должен

Знать: общие положения, законы и теории неорганической химии, химической термодинамики и кинетики;

Уметь: составлять и анализировать простейшие термодинамические и кинетические модели химических процессов;

Владеть: навыками физико-математического моделирования свойств химических объектов и процессов с их участием.

5. Содержание дисциплины (модуля), структурированное по темам

Наименование и краткое содер-	Bcero	В том числе								
жание разделов и тем дисциплины (модуля), форма промежуточной аттеста-	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы из них						Самостоятельная работа обучающегося, часы из них		
ции по дисциплине (модулю)		Занятия лек- ционного типа	Занятия семи- нарского типа	Групповые консультации	Индивидуаль- ные консуль- тации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Bcero	Выполнение домашних за- даний	Подготовка рефератов и	Bcero
Тема 1. Введение в катализ. Общие представления о катализе.	6	2	2				4	2		2
Тема 2. Кислотно-основной катализ .	6	2	2				4	2		2
Тема 3. Окислительно-восстановительный катализ.	6	2	2				4	2		2
Тема 4. Гетерогенный катализ.	8	2	2			2	6	2		2
Тема 5. Основные механизмы гетерогенного катализа	6	2	2				4	2		2
Тема 6. Микро- и мезопористые но- сители	6	2	2				4	2		2
Тема 7. Сверхкритические реакционные среды	6	2	2				4	2		2
Тема 8. Ионные жидкости	6	2	2				4	2		2

Тема 9. Металлорганические кар- касные соединения (МОF).	4	1	1			2	2	2
Тема 10. Современные лабораторные установки для каталитических исследований		2				2	2	2
Промежуточная аттестация <u>зачет</u>	14			2	2	4	10	10
Итого	72	19	17	2	4	42	30	30

Содержание тем:

Тема 1. Введение в катализ. Общие представления о катализе. Определение катализа и катализатора. Краткий исторический очерк. Экономическое значение катализа. Катализ в решении проблем экологии. Ценность катализа в академических исследованиях. Механизм каталитической реакции. Виды катализа. Катализаторы и инициаторы. Понятие об активном центре катализатора. Классификация каталитических процессов. Активность, селективность и стабильность катализаторов. Различные способы их выражения и определения. Модифицирующие добавки, промоторы и каталитические яды. Методы изучения активности катализаторов. Срок службы катализатора, дезактивация. Регенерация.

Тема 2. Кислотно-основной катализ. Механизмы кислотно-основного катализа. Бренстедовская и Льюисовская кислотности и основности. Катализ суперкислотами. Кислотность и каталитическая активность, уравнение Бренстеда. Металлокомплексный катализ. Элементарные стадии металлокомплексного катализа. Катализаторы Циглера – Натта.

Тема 3. Окислительно-восстановительный катализ. Электронные донорно-акцепторные взаимодействия. Многоэлектронные процессы.

Тема 4. Строение поверхности твердых тел и его влияние на каталитическую активность. Промежуточное взаимодействие в гетерогенном катализе. Стадии промежуточного взаимодействия при гетерогенном катализе. Удельная каталитическая активность. Механическая прочность катализатора. Методы исследования дезактивации катализатора и способы их регенерации. Типы гетерогенных катализаторов. Массивные катализаторы. Нанесенные катализаторы. Типы носителей. Функция носителя. Взаимное влияние в системе металл-носитель.

Тема 5. Основные механизмы гетерогенного катализа. Понимание и применение механизмов Ленгмюра-Хиншельвуда, Марса-Ван-Кревелена, Ридила-Или.

Тема 6. Микро- и мезопористые носители Цеолиты. Основные принципы синтеза цеолитов. Коммерческое производство и применение цеолитов. Мезопористые молекулярные системы (МСМ-41, МСМ-48, SBA, SiO₂ и др.). Методы синтеза мезопористых молекулярных систем. Применение.

Тема 7. Сверхкритические реакционные среды Особенности сверхкритических флюидов как растворителей и среды для проведения химической реакции. Области применения сверхкритических флюидов. Катализ в среде сверхкритических растворителей.

Тема 8. Ионные жидкости. Свойства ионных жидкостей. Процессы в ионных жидкостях. Синтез ионных жидкостей. Применение ионных жидкостей.

Тема 9. Металлорганические каркасные соединения (МОF). Синтез МОF. Применение МОF.

Тема 10. Современные лабораторные установки для каталитических исследований. Особенности использования реакторов идеального смешения и идеального вытеснения для измерения скоростей химических реакций. Методика определения каталитической активности. Способы приготовления и использования исходных реакционных смесей. Конструкции лабораторных реакторов

6. Образовательные технологии.

Проводятся традиционные лекции с использованием мультимедийных презентаций. При проведении семинаров будут использованы интерактивные образовательные технологии, такие как тематические дискуссии, мозговой штурм, кейс-технологии

7. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

Студентам предоставляется программа курса, план занятий и перечень заданий для самостоятельной работы. По каждой теме указывается материал в источниках из списков основной и вспомогательной литературы, а также из интернет-ресурсов. Дополнительные материалы размещаются на сайте кафедры общей химии: www.chem.msu.ru/rus/teaching/general-spec.html

8. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Основная литература

- 1. О.В. Крылов. Гетерогенный катализ. М. ИКЦ. «Академкнига», 2004.
- 2. Б.В. Романовский. Основы катализа. М.: «БИНОМ», 2015.
- 3. И. Чокендорф, Х. Наймантсведрайт. Современный катализ и химическая кинетика. Долгопрудный: «Интеллект», 2010.
- 4. Г.К. Боресков. Гетерогенный катализ. М.. Наука, 1986.
- 5. Ч. Сетерфилд. Практический курс гетерогенного катализа. М.: Мир, 1984.
- 6. Б. Гейтс, Дж.Кетцир, Г.Шуйт. Химия каталитических процессов. М.: Мир, 1981.
- 7. Дж.Андерсон. Структура металлических катализаторов. М.:Мир, .
- 8. А.Л. Кустов, П.В. Прибытков, М.А. Тедеева, А.А. Медведев, С.Ф. Дунаев. Методические разработки к спецкурсу по изучению каталитических процессов методом газовой хроматографии. М.: Отдел оперативной печати и информации Химического факультета МГУ имени М.В. Ломоносова, 2019.

Дополнительная литература

- 1. Дж. Андерсон. Структура металлических катализаторов. М.: Мир, 1978.
- 2. Д. Брек. Цеолитовые молекулярные сита. М.: Москва, 1976.
- Перечень используемых информационных технологий, используемых при осуществлении образовательного процесса, включая программное обеспечение, информационные справочные системы (при необходимости):

- 1. Российский информационный портал в области науки, медицины, технологии и образования e-library.ru
- 2. База данных sciencedirect.com
- Описание материально-технической базы. Занятия проводятся в аудитории, оснащенной мультимедийным экраном и персональными компьютерами.

9. Язык преподавания - русский

10. Преподаватели:

д.х.н., профессор Кустов Леонид Модестович, lmkustov@mail.ru, 8(495) 939-52-61; к.х.н., с.н.с. Кустов Александр Леонидович, kyst@list.ru, 8(495) 939-52-61.

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - зачета. На зачете проверяется достижение промежуточных индикаторов компетенций, перечисленных в п. 2. Текущий контроль за освоением материала осуществляется путем опроса на семинарах, проверки домашних заданий.

Демонстрационные варианты домашних заданий:

- 1. Вычислите энергию активации реакции, скорость которой увеличилась вдвое при повышении температуры от 30 до 40 °C.
- 2. Для гетерогенной каталитической реакции A_(газ) + B_(газ) → P_(газ) скорость прямо пропорциональна концентрации вещества A в газовой фазе и обратно пропорциональна концентрации вещества B в газовой фазе. Предложите механизм для такой реакции и выведите выражение для её скорости.
- 3. Скорость реакции $2N_2O_5 = 4NO_2 + O_2$, при температуре 55° С равна $0.75 \cdot 10^{-4}$ моль дм⁻³·с⁻¹. Получите численные значения скоростей по компонентам N_2O_5 , NO_2 и O_2 .
- 4. Вычислите площадь, занимаемую одной молекулой хлора, если 600 г адсорбента имеют поверхность 240,0 м 2 и каждые 100 г поглощают $1\cdot 10^{-5}$ м 3 газообразного хлора при н.у.
- 5. Рассчитайте среднее время пребывания реагентов в проточном реакторе идеального смешения, необходимое для достижения степени превращения исходного вещества $\alpha = 0.8$. В реакторе при T=const протекает реакция $2A \rightarrow R+S$, константа скорости которой $k = 2.5 \cdot 10^{-2} \text{м}^3/\text{c}$. Начальная концентрация реагента A на входе в реакторе cA,0 = 4 кмоль/ m^3 .
- 6. Рассчитайте степень превращения исходного вещества и концентрацию реакции $A \rightarrow B$, протекающей в реакторе идеального вытеснения длиной 1м и площадью сечения 0,07 м², если в реактор поступает раствор с объемной скоростью υ = 0,005 м³/с и концентрацией $C_0(A)$ = 0,5 кмоль/м³, а константа скорости реакции k = 0,06 с⁻¹.
- 7. Реакция A+B \rightarrow 2C проводится в реакторе смешения объемом 0,8 м³. Подача исходных веществ в реакторе осуществляется со скоростями: $v(A) = 8 \cdot 10^{-4}$ м³/с и $v(B) = 4 \cdot 10^{-4}$ м³/с. Концентрации веществ в потоке равны: $C_0(B) = 0.36$ кмоль/м³, $C_0(A) = 0.24$

кмоль/м³ и $C_0(C) = 0$ кмоль/м³. Константа скорости реакции $k = 4,1 \cdot 10^{-2} \text{c}^{-1}$ кмоль⁻¹м³. Определить производительность системы по продукту.

Примерный перечень вопросов к зачету:

- 1. Определение катализа. Виды катализа. Каталитические процессы в природе. Механизм каталитической реакции, каталитический цикл. Активность и стабильность катализаторов. Промоторы и каталитические яды (ингибиторы).
- 2. Классификация гомогенных катализаторов, их активность и селективность.
- 3. Кислотный и основный катализ. Механизм кислотного и основного катализа. Количественная характеристика кислотно-основного взаимодействия. Жесткие и мягкие кислоты и основания. Сверхкислоты. Специфический и общий кислотно-основный катализ. Особенности кинетики и механизм.
- 4. Кинетика гетерогенно-каталитических реакций. Механизм Ленгмюра-Хиншельвуда.
- 5. Кинетика гетерогенно-каталитических реакций. Механизм Ридила-Или.
- 6. Реакции окисления. Полное и парциальное окисление. Механизм каталитического окисления Марса ван Кревелена.
- 7. Модифицированные и смешанные оксидные катализаторы. Цеолитные катализаторы, связь их активности с типом цеолита, наличием гидроксильных групп, природой и концентрацией введенных в цеолит ионов. Молекулярно-ситовые свойства цеолитных катализаторов.
- 8. Типы гетерогенных катализаторов. Металлы и сплавы как катализаторы. Корреляция между каталитической активностью металлов и степенью участия d-электронов в образовании металлических связей.
- 9. Методы приготовления гетерогенных катализаторов: осаждение, пропитка, кристаллизация, золь-гель метод, механохимический метод. Термическая обработка катализаторов. Факторы, определяющие дисперсность активного компонента

Задачи

- 1. Определите во сколько раз при температуре Т изменится численное значение константы скорости при переходе от единиц концентрации Па кмоль/л и от единиц времени ми к с для реакций следующих порядков: a) 2; б) 3/2; в) ½
- 2. При повышении температуры от 60 до 70°С константа скорости реакции возросла в два раза. Вычислите энергию активации этой реакции.
- 3. Рассчитайте среднее время пребывания реагентов в проточном реакторе идеального вытеснения, необходимое для достижения степени превращения исходного вещества α = 0,8. В реакторе при T=const протекает реакция 2A→R+S, константа скорости которой k = 2,5·10⁻²м³/с. Начальная концентрация реагента A на входе в реакторе $C_0(A)$ = 4 кмоль/м³.
- 4. Рассчитайте степень превращения исходного вещества при протекании реакции 2A→продукты в реакторе идеального вытеснения объемом 1м³. Начальная концентрация $C_0(A) = 2$ кмоль/м³, $k = 2.5 \cdot 10^{-2}$ с⁻¹, а скорость подачи $v = 2 \cdot 10^{-2}$ м³/с.
- 5. Реакция А \rightarrow продукты, для которой константа скорости реакции $k = 4,2 \cdot 10^{-3} \text{c}^{-1}$, проходит в реакторе идеального смешения при скорости подачи $v = 0,7 \cdot 10^{-3} \text{m}^3/\text{c}$ и начальной концентрации $C_0(A) = 2$ кмоль/м 3 . Рассчитайте объем реактора, чтобы степень превращения вещества A в реакторе была равна 0,85.
- 6. Реакция A + B → 2C проводится в двух реакторах идеального вытеснения, соединенных последовательно. Объемы реакторов: V_1 = 0,2, V_2 = 0,6 м³. Концентрации исходных веществ на входе в первый реактор равны: C_0 (A) = 0,16, C_0 (B) = 0,12 кмоль/м³. Ско-

- рость подачи исходных веществ равна: $v = 1,2 \cdot 10^{-3} \text{м}^3/\text{c}$, $C_0(\text{C}) = 0$, $k = 4,1 \cdot 10^{-2} \text{кмоль}^{-1} \text{c}^{-1} \text{м}^3$. Определите производительность системы по продукту.
- 7. Для реакции второго порядка $A + B \rightarrow R + S$ константа скорости реакции $k = 4,8 \cdot 10^{-2} c^{-1}$ кмоль $^{-1} m^3$. Начальная концентрация веществ $C_0(A) = C_0(B) = 0,07$ кмоль $/m^3$. Скорость подачи веществ v = 0,0015 m^3/c . Определите производительность системы по сырью. Система состоит из двух параллельно соединенных реакторов идеального смещения ($V_1 = 0,8$ m^3) и идеального вытеснения ($V_2 = 0,2$ m^3).
- 8. В реакторе периодического действия протекает жидкофазная реакция второго $A + B \rightarrow R + S$ при постоянном объеме и соотношении начальных концентраций веществ $C_0(A)$: $C_0(B) = 0.55:0.45$. Известно, что за время $\tau = 80$ с степень превращения по веществу В достигает 30%. Определите степени превращения веществ A и B в реакторе идеального смешения и реакторе идеального вытеснения, если соотношение концентраций исходных веществ на входе в реактор остается прежним, а подача исходных веществ осуществляется раздельно. Скорости подачи равны: v(A) = 0.0018, v(B) = 0.0027 м $^3/c$, объемы реакторов одинаковы и равны V = 5.2 м 3

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков приведена в таблице ниже:

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)								
Оценка	2	3	4	5				
Результат								
Знания	Обрывочные	В целом систематические,	Систематические, общие, но не-	Сформированные систематиче-				
	знания или их	но неглубокие знания со	достаточно структурированные	ские знания				
	отсутствие	значительными пробела-	знания					
		МИ						
Умения	Отдельные	В целом систематическое,	В целом успешное, но содержащее	Успешное и систематическое				
	умения или их	но ограниченное умение,	отдельные пробелы умение (до-	умение				
	отсутствие	успешное только в про-	пускает неточности непринципи-					
		стейших ситуациях	ального характера)					
Навыки (владе-	Отдельные на-	Шаблонные навыки, при-	В целом сформированные навыки,	Сформированные навыки, при-				
ния)	выки или их	годные для решения про-	но не все в активной форме	меняемые при решении различ-				
	отсутствие	стейших задач		ных задач				

по дисциплине (модулю)	
Знать: современные методы получения функциональных материалов, используемых в	мероприятия текущего контроля ус-
катализе;	певаемости, устный опрос на проме-
	жуточной аттестации
Уметь: на основе теоретических знаний о современных высокоэффективных каталитических	мероприятия текущего контроля ус-
материалах, определяет условия синтеза катализаторов с заранее заданными свойствами	певаемости, устный опрос на проме-
	жуточной аттестации
Владеть: методами химической модификации каталитических систем с целью повышения их	мероприятия текущего контроля ус-
каталитической активности.	певаемости, устный опрос на проме-
	жуточной аттестации