Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

И.о. декана химического факультета, Чл.-корр. РАН, профессор

/С.Н. Калмыков/

«30» августа 2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Спецпрактикум

Уровень высшего образования:

Магистратура

Направление подготовки (специальность):

04.04.01 Химия

Направленность (профиль) ОПОП:

Химическая технология

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №3 от 13.05.2019)

Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки 04.04.01 «Химия» (программа магистратуры) в редакции приказа МГУ от 30 августа 2019 г., №1033.

Год (годы) приема на обучение 2019/2020, 2020/2021

- 1. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.
- 2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников). Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП (в форме компетенция индикатор ЗУВ) указано в Общей характеристике ОПОП.

Компетенция	Индикаторы достижения	Планируемые результаты обучения по дис- циплине (модулю)
ОПК-1.М. Способен выполнять комплексные экспериментальные и расчетно-теоретические исследования в избранной области химии или смежных наук с использованием современного научного оборудования, программного обеспечения и баз данных профессионального назначения СПК-1.М Способен использовать теоретические основы химической технологии для разработки новых и оптимизации существующих химикотехнологических процессов получения веществ	ОПК-1.М.2 Проводит экспериментальные и (или) расчетнотеоретические работы в области химии, соответствующей профилю магистерской программы, с использованием современного научного оборудования и программного обеспечения СПК-1.М.1 Использует теоретические основы химической технологии при разработке новых материалов	Уметь: проводить математическую обработку физико-химических данных, обобщать полученные результаты Владеть: методологией разработки новых технологий получения веществ и материалов
и материалов СПК-2.М Способен обоснованно выбирать и применять современные методы исследования при создании и внедрении новых химических технологий	СПК-2.М.1 Предлагает методы исследования новых материалов, адекватные поставленной задаче СПК-2.М.2 Применяет современные методы исследования при создании и внедрении новых химических технологий получения материалов	Уметь: выбирать методы и методики получения веществ и материалов с заданным набором параметров Уметь: проводить комплексное исследование физико-химических свойств веществ и материалов при решении задач профессиональной деятельности Владеть: навыками проведения комплексного исследования физико-химических свойств веществ и материалов при решении задач профессиональной деятельности
СПК-3.М Способен оценивать риски, экономическую эффективность и выбирать экологически безопасные способы производства новых веществ и материалов	СПК-3.М.1 Оценивает риски, экономическую эффективность и экологическую безопасность технологических схем	Уметь: анализировать технологическую схему получения целевого продукта, предлагать способы повышения ее эффективности Уметь: анализировать жизненные циклы веществ и материалов для оптимизации условий их эксплуатации и экологически обоснованных способов их утилизации

- 3. Объем дисциплины (модуля) составляет **8** зачетных единиц, всего **288** часов, из которых **200** час составляет контактная работа студента с преподавателем (171 час лабораторные занятия, 23 часа индивидуальные консультации, 6 часов промежуточный контроль успеваемости), **88** часов составляет самостоятельная работа студента.
- 4. Входные требования для освоения дисциплины (модуля), предварительные условия. Обучающийся должен

Знать: теоретические основы физико-химических методов анализа веществ и материалов.

Уметь: проводить математическую обработку физико-химических данных, полученных в ходе экперимента, обобщать полученные результаты

Владеть: навыками безопасной работы с веществами и материалами с учетом их физических и химических свойств.

5. Содержание дисциплины (модуля), структурированное по темам.

Наименование и краткое содер-	В том числе									
жание разделов и тем дисциплины (модуля), форма промежуточной аттеста-	(часы)	Контак	Контактная работа (работа во взаимодействии с преподавателем), часы из них					Самостоятельная работа обучающегося, часы из них		
ции по дисциплине (модулю)		Занятия лекционного типа	Занятия семинарского типа	Групповые консульта- ции	Индивидуальные кон- сультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Bcero	Выполнение домашних заданий	Подготовка рефератов и т.п	Bcero
Тема 1. Полимерные композици- онные материалы	45		26		3		29			16
Тема 2. Углеродные материалы	40		26		2		28			12

Тема 3. Сверхтвердые материалы	24	14	2		16	8
Тема 4. Металлогидридные материалы	22	14	2		16	6
Тема 5. Мембранные материалы	21	14	2		16	5
Тема 6. Многофункциональные материалы с сегнетоэлектрическими, нелинейно оптическими и люминесцентными свойствами	21	14	2		16	5
Тема 7. Дифракционные методы исследования структуры твердых тел	40	22	2		24	16
Тема 8. Электронная микроскопия	13	6	2		8	5
Тема 9. Термоаналитические ме- тоды	21	14	2		16	5
Тема 10. Физико-механические методы испытания материалов	21	14	2		16	5
Тема 11. Аддитивные технологии	14	7	2		9	5
Промежуточная аттестация <u>зачет</u>	6			6	6	
Итого	288	171	23	6	200	88

6. Образовательные технологии:

-применение компьютерных симуляторов, обработка данных на компьютерах, использование компьютерных программ, управ-

ляющих приборами;

- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.

7. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

Студентам предоставляется план занятий и методические руководства по выполнению практических задач.

8. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Со всех компьютеров МГУ организован доступ к полным текстам научных журналов и книг на русском и иностранных языках. До-ступ открыт по IP-адресам, логин и пароль не требуются: http://nbmgu.ru/

Основная литература

- 1. Клямкин С.Н., Вербецкий В.Н., Яковлева Н.А., Митрохин С.В., Бердоносова Е.А. Синтез гидридов Интерметаллических соединений (ИМС) и исследование равновесий в системах ИМС-водород. Москва. 2008.
- 2. Ступников В.А., Булычев Б.М., Генчель В.К. Синтез сверхтвердых веществ при высоких давлениях и температурах на примере алмаза и кубического нитрида бора. Москва. 2003.
- 3. Тепляков В.В., Алентьев А.Ю., Малых О.А. Сравнительный анализ мембранных модулей различного типа для получения азотсодержащих газовых смесей из воздуха. Москва. 2007.
- 4. Лазоряк Б.И., Моисеев Е.А., Гутников С.И. Получение и изучение физико-механических свойств непрерывных волокон. Москва. 2007.
- 5. Лазоряк Б.И., Стефанович С.Ю. Определение электрофизических свойств твердых материалов. Москва. 2012.
- 6. Яблокова М.Ю. Полимерные композиционные материалы: методы получения. Москва. 2011.
- 7. Коган Е.В., Хейфец Л.И., Тепляков В.В. Исследование удельной поверхности и пористости твердых материалов адсорбционными методами. Москва. 2008.
- 8. Хейфец Л.И., Зеленко В.Л. Математическое моделирование процесса термического расширения интеркалированного графита. Москва. 2007.
- 9. Сорокина Н.Е., Лешин В.С., Максимова Н.В., Ионов С.Г., Авдеев В.В. Технология получения терморасширенного графита и графитовой фольги. Методы исследования их физико-химических свойств. Москва. 2007.
- 10. Вербецкий В.Н., Митрохин С.В., Тепанов А.А., Мовлаев Э.А. Гидридное диспергирование сплавов и интерметаллических соединений (процессов HD). Москва. 2017.
- 11. Архангельский И.В., Дунаев А.В., Ионов С.Г. Термоаналитические методы исследования. Москва. 2010.

Дополнительная литература

1. Булычев Б.М., Ступников В.А. Высокие давления в твердофазном синтезе веществ и материалов. М.: Техносфера. 2018. 157 с.

Материально-техническое обеспечение:

Занятия проводятся в практикумах и лабораториях кафедры химической технологии и новых материалов химического факультета МГУ имени М.В. Ломомносова:

Лабораторные и офисные помещения кафедры химической технологии и новых материалов (П-07, 110, 112, 201)

Лаборатория для проведения практических занятий: 18 рабочих мест, комплект лабораторного оборудования:

лабораторные столы – 3 шт., вытяжной шкаф – 2 шт., мойка – 2 шт., сушильный шкаф – 1 шт., хроматографы газовые – 2 шт., азотгенераторная установка – 1 шт., комплекс GKSS для определения газотранспортных характеристик материалов барометрическим методом – 1 шт., установка ИГМ для исследования газопроницаемых материалов – 1 шт., дистилляторная установка для оценки термодинамической эффективности процесса очистки воды – 2 шт., термостаты для определения коэффициента теплообмена – 4 шт.

Лаборатория для проведения практических занятий: 12 рабочих мест, лабораторные столы – 1 шт., вытяжной шкаф – 1 шт., муфельная печь – 2 шт., лабораторная установка для вспенивания окисленного графита и прокатки пенографита – 1шт.

Лаборатория для проведения практических занятий: лабораторная учебно-технологическая линия по получению минеральных волокон – 1 ппт.

Лаборатория для проведения практических занятий, 6 рабочих мест, лабораторные столы – 1 шт., лабораторная установка для синтеза искусственных алмазов – 1шт.

- 9. Язык преподавания русский
- 10. Преподаватели: преподаватели и сотрудники кафедры химической технологии и новых материалов химического факультета МГУ имени Ломоносова

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - экзамена. На экзамене проверяется достижение промежуточных индикаторов компетенций, перечисленных в п.2.

Вопросы к зачету

Зачет по дисциплине выставляется при условии выполнения и защиты всех предписанных учебным планом задач. При сдаче задачи могут быть заданы следующие вопросы:

- 1. Какие данные можно получить из дифрактограммы соединения или материала?
- 2. Что понимается под параметрами пористой структуры твердых материалов?
- 3. Как определить величину удельной поверхности твердого материала адсорбционными методами?
- 4. Уравнение БЭТ.
- 5. Пределы применимости теории дифракции Фраунгофера и теории Ми для определения размеров сферических частиц?
- 6. В каких средах производится измерение размеров частиц лазерно -дифракционным методом и каково назначение иммерсионных жидкостей?
- 7. Назовите режимы проведения измерений размеров частиц на приборе CILAS 1180. Какие методы диспергирования в нем применяются?
- 8. Какие существуют ограничения по определению размеров частиц методом оптической микроскопии?
- 9. Перечислите методы определения размеров частиц дисперсных материалов.
- 10. Устройство оптического микроскопа.
- 11. Перечислите типы пористых материалов и методы исследования пористой структуры.
- 12. На чем основан метод ДСК? Какие исследовательские задачи можно решать с его помощью?
- 13. Какие эффекты на кривых ДСК отвечают процессам отверждения и стеклования?
- 14. Перечислите основные механо-прочностные характеристики материалов. Какие методы для их определения существуют?
- 15. Что такое твердость материала и как ее определяют?
- 16. Основные характеристики сегнетоэлектриков. Что такое температура Кюри?
- 17. Метод генерации второй гармоники.
- 18. Какие превращения происходят в веществе под действием высоких давлений?
- 19. Что такое эпоксидное число и как его определяют?
- 20. Понятие термостойкости.
- 21. Основные параметры уплотнительных материалов, способы их определения и влияние на них условий эксплуатации.
- 22. Методы получения сегнетоэлектрических материалов.
- 23. Методы получения неорганических волокон.
- 24. Что такое интерметаллическое соединение? Методы получения.
- 25. Метод вакуумной инфузии: принципы, преимущества, недостатки и обрасти применения.
- 26. Способы получения интеркалированных соединений графита.
- 27. Технология получения пенографита и изделий из него.
- 28. Пироуглерод определение, способы получения, классификация и обралсти применения.

- 29. Методы получения сверхтвердых материалов.
- 30. Полимерные мембраны методы получения, классификация и свойства.

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)							
Оценка	2	3	4	5			
Результат							
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные систематиче-			
	знаний		знания	ские знания			
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое уме-			
	умений	систематическое умение	отдельные пробелы умение (до-	ние			
			пускает неточности непринципи-				
			ального характера)				
Навыки (владе-	Отсутствие на-	Наличие отдельных навы-	В целом, сформированные навыки,	Сформированные навыки, приме-			
ния)	выков	ков	но не в активной форме	няемые при решении задач			

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ
по дисциплине (модулю)	
Уметь: проводить математическую обработку физико-химических данных, обобщать полученные результаты	мероприятия текущего контроля ус- певаемости, устный опрос на зачете и
Уметь: выбирать методы и методики получения веществ и материалов с заданным набором па-	при приеме работ
раметров	
Уметь: проводить комплексное исследование физико-химических свойств веществ и материалов при решении задач профессиональной деятельности	
Уметь: анализировать технологическую схему получения целевого продукта, предлагать способы повышения ее эффективности	
Владеть: методологией разработки новых технологий получения веществ и материалов	мероприятия текущего контроля ус-

Владеть: навыками проведения комплексного исследования физико-химических свойств ве-	певаемости, устный опрос на зачете и
ществ и материалов при решении задач профессиональной деятельности	при приеме работ