Инструкции

- Впишите свою фамилию и код латинскими буквами в соответствующие поля в верхней части каждого листа ответов.
- Вам дано 5 часов для решения всех задач.
- Для работы используйте только выданные Вам ручку и калькулятор.
- Ваши ответы, их обоснование и расчеты должны быть записаны только в специально отведенных для этого местах. Никакие прочие записи оцениваться не будут. Используйте оборотную сторону листов в качестве черновика.
- Когда это необходимо, приведите соответствующие расчеты. Если Вы дадите результат, но не укажете способ решения, то получите 0 баллов за этот вопрос.
- Укажите единицы измерения для численных величин, где это необходимо, иначе Вам понизят оценку.
- Прекратите работу, как только будет дана команда СТОП. Невыполнение этого требования может привести к дисквалификации.
- Когда Вы закончите работу, вложите Ваши листы ответов и задания теоретического тура в выданный Вам конверт и самостоятельно заклейте его.
- Не покидайте лабораторию без разрешения.
- Вы можете попросить официальную английскую версию задания, если вам чтото непонятно в русском переводе.

Константы и формулы

Постоянная Авогадро:	$N_{\rm A} = 6.022 \text{ x } 10^{23} \text{ моль}^{-1}$	Уравнение идеального газа:	pV = nRT	
Газовая постоянная:	$R = 8.314 \text{Дж K}^{-1} \text{моль}^{-1}$	Энергия Гиббса:	G = H – TS	
Постоянная Фарадея:	F = 96485 Кл моль ⁻¹	Δ _r €° −RT lnK −r		
Постоянная Планка:	<i>h</i> = 6.626 x 10 ⁻³⁴ Дж с	Уравнение Нернста	$E = E^{\circ} + \frac{RT}{zF} \ln \frac{c_{ox}}{c_{red}}$	
Скорость света:	$c = 2.998 \times 10^8 \text{ m c}^{-1}$	Энергия фотона	$E = \frac{hc}{\lambda} = hv$	
Ноль по шкале Цельсия:	273.15 K	Закон Ламберта-Бера:	$A = \lg \frac{I_0}{I} = \varepsilon c I$	

При расчете констант равновесия стандартная концентрация принимается равной 1 моль $\rm n^{-1}$. Во всех задачах считайте газы идеальными.

Периодическая таблица с относительными атомными массами

1																	18
1 H 1.01	2											13	14	15	16	17	2 He 4.00
3 Li 6.94	4 Be _{9.01}											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.30	3	4	5	6	7	8	9	10	11	12	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.87	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.64	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.96	43 Tc	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.41	49 In 114.82	50 Sn 118.71	51 Sb 121.76	52 Te 127.60	53 126.90	54 Xe 131.29
55 Cs 132.91	56 Ba 137.33	57- 71	72 Hf 178.49	73 Ta 180.95	74 W 183.84	75 Re 186.21	76 Os 190.23	77 r 192.22	78 Pt 195.08	79 Au 196.97	80 Hg 200.59	81 TI 204.38	82 Pb 207.2	83 Bi 208.98	84 Po -	85 At -	86 Rn -
87 Fr -	88 Ra -	89- 103	104 Rf -	105 Db	106 Sg	107 Bh -	108 Hs -	109 Mt -	110 Ds	111 Rg -							

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
138.91	140.12	140.91	144.24	-	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
		.	O_	50	J-1	30	90	91	90	99	100	101	102	103
Ac	Th	Pa	Ü	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

8 баллов

1a	1b	1c	1d	1e	1f	1g	1h	1i	Очки
2	4	2	1	1	1	3	2	1	17

В 1894 г. Рэлей обнаружил, что масса *химически чистого азота* отличается от массы такого же объема азота, выделенного из атмосферы (см. Таблицы 1 и 2). Позднее это различие объяснили присутствием аргона в *атмосферном азоте*. Массы всех газов измеряли в одном и том же стеклянном сосуде известного объема при нормальном атмосферном давлении $(1.013 \times 10^5 \, \text{Ta})$.

Таблица 1. Масса химически чистого азота в сосуде

Полученного из оксида азота (II)	2.3001 г
Полученного из оксида азота (I)	2.2990 г
Полученного прокаливанием нитрита аммония	2.2987 г
Полученного из мочевины	2.2985 г
Полученного из нитрита аммония в мягких условиях	2.2987 г
Средняя	2.2990 г

Таблица 2. Масса атмосферного азота в сосуде

О ₂ поглощен нагретой медью (1892 г.)	2.3103 г
О ₂ поглощен нагретым железом (1893 г.)	2.3100 г
O ₂ поглощен сульфатом железа (II) (1894 г.)	2.3102 г
Средняя	2.3102 г

- **а)** Рассчитайте объем (в м³) сосуда, использованного Рэлеем. В расчетах используйте среднюю массу *химически чистого азота*. Считайте, что все измерения проводили при температуре 15.0 °C.
- **b)** Рассчитайте мольную долю *x* аргона в *атмосферном азотт*е, считая, что он состоит только из аргона и азота. В расчетах используйте средние массы *атмосферного азотта* и *химически чистого азотта*.

Рамзай и Клеве открыли гелий в минерале клевеите (состоит из оксида урана и оксидов свинца, тория, редкоземельных элементов) в 1895 году. Газ, извлеченный из минерала, дал четкую линию в спектре поглощения вблизи 588 нм (обозначена D_3 на рис. 1). Эту же линию впервые обнаружили в солнечном спектре во время полного солнечного затмения в 1868 году; она располагается вблизи хорошо известных линий натрия D_1 и D_2 .

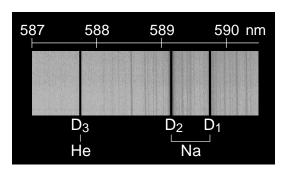


Рис. 1. Спектральные линии вблизи 588 нм

c) Рассчитайте энергию E [в Дж] фотона с длиной волны, соответствующей линии гелия D_3 на рис. 1.

На рис. 2 изображены электронные уровни энергии атома гелия. Стрелками обозначены переходы между уровнями, разрешенные правилами спектроскопии.

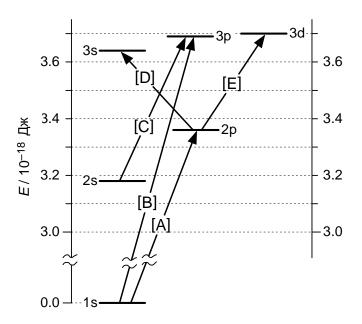


Рис. 2. Электронные уровни энергии атома гелия. За ноль принята энергия 1s-уровня.

d) Среди переходов, приведенных на рисунке 2, <u>выберите</u> переход, соответствующий линии D_3 в спектре гелия. В листе ответов отметьте галочкой единственный вариант.

e) <u>Какое</u> из приведенных ниже уравнений объясняет присутствие гелия в минерале клевеите? В листе ответов отметьте галочкой только один из вариантов [A] – [D].

[A]
$$^{238}U \rightarrow ^{234}Th + \alpha$$

[B]
$$UHe_2 \rightarrow U + 2He$$

[C]
$$^{240}\text{U} \rightarrow ^{240}\text{Np} + \beta^{-}$$

[D]
$$^{235}\text{U} + \text{n} \rightarrow ^{95}\text{Y} + ^{139}\text{I} + 2\text{n}$$

Другой инертный газ – аргон – также можно обнаружить в горных породах.

f) <u>Какое</u> из приведенных ниже уравнений объясняет присутствие аргона в горных породах? В листе ответов отметьте галочкой только один из вариантов [A] – [D].

[A]
$$ArF_2 \rightarrow Ar + F_2$$

[B]
$$ArXe \rightarrow Ar + Xe$$

[C]
40
K \to 40 Ar + ϵ/β^+ (бета-захват электрона или испускание позитрона)

[D]
$$^{126}\text{I} \rightarrow ^{126}\text{Ar} + \beta^-$$

Одно из доказательств того, что аргон и гелий одноатомны, основано на измерении отношения изобарной и изохорной теплоемкостей, $\gamma = C_p / C_V$, которое для одноатомного идеального газа равно 5/3 (1.67 ± 0.01). Эту величину можно найти, измеряя скорость звука V_s в газе, которая связана с отношением теплоемкостей γ формулой:

$$V_s = f\lambda = \sqrt{\frac{\gamma RT}{M}}$$

где f и λ — частота и длина звуковой волны, R, T и M — универсальная газовая постоянная, абсолютная температура и молярная масса газа, соответственно.

Для некоторого неизвестного газа длина звуковой волны оказалась равна $\lambda = 0.116$ м, а частота f = 3520 Гц (Гц = c⁻¹) при температуре 15.0 °C и атмосферном давлении (1.013 × 10⁵ Па). Плотность ρ газа при этих условиях составила 0.850 ± 0.005 кг м⁻³.

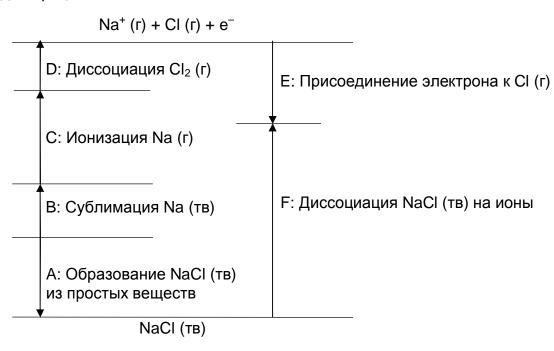
g) Рассчитайте молярную массу M [в кг моль $^{-1}$] неизвестного газа.

- **h)** Рассчитайте отношение теплоемкостей γ для этого газа.
- i) <u>Укажите</u> неизвестный газ. В листе ответов отметьте галочкой только один из вариантов [A] [D].
 - [A] HCI
 - [B] HF
 - [C] Ne
 - [D] Ar

6 баллов

2a	2b	2c	2d	2e	Очки
4	4	4	3	5	20

Кристаллическая структура галогенидов щелочных металлов


В ионных кристаллах катионы, как правило, располагаются в пустотах плотнейшей кристаллической решетки анионов. Структура ионного кристалла, такого как хлорид натрия, является устойчивой, если катионы контактируют с ближайшими анионами.

- **а)** В кристаллическом хлориде натрия как ионы Na⁺, так и ионы Cl⁻ имеют гранецентрированную кубическую упаковку. <u>Укажите</u>, сколько ионов Na⁺ и ионов Cl⁻ приходится на одну элементарную ячейку; укажите также координационные числа этих ионов в кристалле хлорида натрия.
- **b)** Ионные радиусы Na⁺ и Cl⁻ в кристалле хлорида натрия равны соответственно 0.102 нм и 0.181 нм. <u>Вычислите</u> плотность (в кг м⁻³) кристалла хлорида натрия.

Цикл Борна-Габера и энтальпия кристаллической решетки

В ионных кристаллах энергия кристаллической решетки очень велика. Энтальпию образования кристаллической решетки из газообразных ионов находят с помощью цикла Борна-Габера.

c) Ниже изображен цикл Борна-Габера для NaCl. <u>Напишите</u> уравнения химических реакций для процессов A и F.

d) Вычислите энтальпию образования кристаллической решетки NaCl из газообразных ионов (в кДж моль⁻¹), используя энтальпии, приведенные в таблице.

Образование NaCl (тв)	Сублимация Na (тв)	Ионизация Na (г)	Диссоциация Cl ₂ (г)	Присоединение электрона к CI (г)
-411	109	496	242	-349
кДж моль ^{−1}	кДж моль ^{−1}	кДж моль ^{–1}	кДж моль ⁻¹	кДж моль ^{−1}

Синтез карбоната натрия в процессе Сольве

Карбонат натрия является исходным материалом при производстве стекла, медикаментов, щелочных ПАВ и т.д.

е) Процесс Сольве описывается суммарной химической реакцией:

Эта реакция не протекает при непосредственном контакте веществ. Процесс происходит с участием аммиака и включает пять следующих реакций:

CaCO₃
$$\stackrel{\triangle}{\to}$$
 [A]+[B]
NaCl + NH₃+ [B] + H₂O \rightarrow [C]+ [D]
2 [C] $\stackrel{\triangle}{\to}$ Na₂CO₃ + H₂O + [B]
[A]+ H₂O \rightarrow [E]
[E]+2[D] \rightarrow CaCl₂ + 2H₂O + 2NH₃

где Δ обозначает нагревание. <u>Запишите</u> химические формулы веществ, зашифрованных буквами [A]–[E], в соответствующих полях листа ответов.

7 баллов

3a	3b	3c	3d	Очки
2	3	1	3	9

Химическое потребление кислорода (ХПК) раствором определяется содержанием в нем окисляемых веществ, в том числе органических. ХПК используют как характеристику качества воды. Например, в технической воде ХПК должно быть не более 1 мг·л $^{-1}$. По определению, ХПК – это масса O_2 (в мг), которая присоединяет такое же число электронов, что и сильный окислитель, действующий на 1 л анализируемого раствора. Ниже приведен пример методики определения ХПК.

Методика определения ХПК

1.00 л анализируемого раствора подкислили необходимым количеством серной кислоты. Хлорид-ионы удалили из раствора, добавив раствор нитрата серебра. Затем к анализируемому раствору прибавили 1.00×10^{-1} л раствора перманганата калия с концентрацией 5.00×10^{-3} моль·л⁻¹. Смесь нагревали в течение 30 мин. Затем к ней добавили 1.00×10^{-1} л стандартного раствора оксалата натрия (Na₂C₂O₄) с концентрацией 1.25×10^{-2} моль·л⁻¹. Смесь тщательно перемешали. Оставшиеся в избытке оксалат-ионы оттитровали раствором перманганата калия с концентрацией 5.00×10^{-3} моль·л⁻¹; при этом израсходовали 3.00×10^{-2} л раствора титранта.

- **а)** <u>Запишите</u> уравнение описанной в методике окислительно-восстановительной реакции между перманганатом калия и оксалатом натрия.
- **b)** Рассчитайте массу O_2 (в мг), которая окисляет такое же число молей окисляемых веществ, что и 1.00×10^{-3} л раствора перманганата калия с концентрацией 5.00×10^{-3} моль·л $^{-1}$.
- **с)** Из приведенных ниже утверждений <u>выберите</u> то, которое правильно объясняет необходимость удалять из анализируемого раствора хлорид-ионы. В листе ответов поставьте соответствующую букву.
 - [А] Часть хлорид-ионов реагирует с перманганатом калия, что приводит к ошибке в значении ХПК.
 - [В] Часть хлорид-ионов реагирует с оксалатом натрия, что приводит к ошибке в значении ХПК.
 - [С] Часть хлорид-ионов реагирует с органическими веществами, содержащимися в анализируемом растворе, что приводит к ошибке в значении ХПК.
 - [D] В ходе титрования раствор окрашивается, что приводит к ошибке в значении ХПК.
- **d)** <u>Рассчитайте</u> ХПК (в мг· π^{-1}) раствора, анализ которого описан в приведенной выше «Методике определения ХПК».

6 баллов

4a	4b	4c	4d	Очки 4
2	3	2	1	8

Перезаряжаемые литий-ионные источники тока были разработаны в Японии.

Стандартная электродвижущая сила литий-ионного гальванического элемента равна 3.70 В. Считайте, что на катоде протекает полуреакция:

$$CoO_2 + Li^+ + e^- \rightarrow LiCoO_2$$

а на аноде – полуреакция:

$$LiC_6 \rightarrow 6C + Li^+ + e^-$$
.

- **а)** <u>Запишите</u> уравнение суммарной реакции, протекающей в литий-ионном элементе и <u>рассчитайте</u> стандартную энергию Гиббса этой реакции (в кДж моль⁻¹).
- **b)** Для изготовления электродов в литий-ионных аккумуляторах используют $LiCoO_2$ и графит (C). <u>Найдите</u> массу анода в полностью заряженном и в полностью разряженном литий-ионном элементе, содержащем в начальном состоянии 10.00 г $LiCoO_2$ и 10.00 г графита (C).
- с) Рассчитайте максимальную энергию на единицу массы, которую можно получить от литий-ионного аккумулятора (в кДж кг⁻¹). Примите, что вещества, из которых изготовлены катод и анод, взяты в стехиометрическом соотношении, а суммарная масса электродов составляет 50.0% от массы аккумулятора. Для сравнения, аналогичная величина для обычного свинцового аккумулятора, используемого в автомобилях, составляет примерно 200 кДж кг⁻¹.
- **d)** В литий-ионных элементах используют электролит на основе органических растворителей, потому что нельзя использовать воду. <u>Запишите</u> формулу газа, образующегося при попадании воды в электролит литий-ионного элемента.

7 баллов

5a-1	5a-2	5b	5c	5d	5e	5f	Очки
1	1	2	2	3	4	5	18

Когда атом X поглощает фотон, энергия которого превышает энергию ионизации атома, испускается электрон (его называют фотоэлектроном) и атом превращается в положительный ион X^{+} . В этом процессе энергия сохраняется, что показано на рис. 1, а именно:

Энергия фотона (hv) = = энергия ионизации (IE) атома X + кинетическая энергия фотоэлектрона

Аналогичный процесс может происходить в молекулах. Например, молекула H_2 , поглощая фотон высокой энергии, испускает фотоэлектрон и превращается в молекулярный ион H_2^+ , который может находиться в различных колебательных состояниях. Зависимость числа фотоэлектронов от их кинетической энергии называют фотоэлектронным спектром. На рис. 2 изображен фотоэлектронный спектр H_2 . Он был получен при облучении молекул H_2 , находящихся в основном колебательном состоянии, фотонами с энергией 21.2 эВ. Других пиков, кроме показанных на рисунке, в спектре нет.

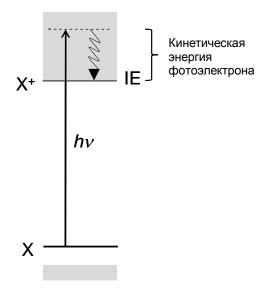


Рис. 1. Энергетическая диаграмма процесса ионизации.

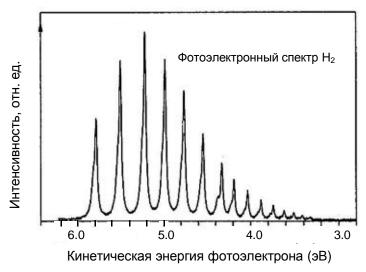


Рис. 2. Фотоэлектронный спектр H_2 . Энергия ионизирующего фотона равна 21.2 эВ.

- **а-1)** <u>Найдите</u> энергию $\Delta E_{\rm A1}$ перехода (в эВ, с точностью до десятых) между молекулой H_2 (v=0) и ионом H_2^+ ($v_{\rm ион}=0$). v и $v_{\rm ион}$ обозначают номера колебательных уровней H_2 и H_2^+ , соответственно.
- **а-2)** <u>Найдите</u> энергию ΔE_{A2} перехода (в эВ, с точностью до десятых) между уровнями H_2^+ ($v_{\text{ион}} = 0$) и H_2^+ ($v_{\text{ион}} = 3$).
- **b)** Уровни энергии электрона E_n^{H} в атоме водорода описываются выражением

$$E_n^{H} = -\frac{Ry}{n^2}$$
 $(n=1,2,3\cdots)$

где n – главное квантовое число, Ry – константа, имеющая размерность энергии. Энергия перехода с уровня n = 1 на уровень n = 2 в атоме водорода равна 10.2 эВ. <u>Рассчитайте</u> энергию ионизации $E_{\rm B}$ атома водорода из основного электронного состояния (в эВ, с точностью до десятых).

- **c)** В эксперименте было найдено, что минимальная энергия, необходимая для получения двух возбужденных атомов водорода H^* (n=2) из невозбужденной молекулы H_2 (v=0) равна 24.9 эВ. <u>Найдите</u> энергию связи E_C в молекуле H_2 (в эВ, с точностью до десятых).
- **d)** Рассмотрев соответствующий энергетический цикл, <u>найдите</u> энергию связи E_D в молекулярном ионе H_2^+ (в эВ, с точностью до десятых).
- **e)** <u>Рассчитайте</u> минимально необходимую энергию E_E (в эВ, с точностью до десятых) для реакции диссоциативной ионизации:

$$H_2 \longrightarrow H^*(n=2) + H^+ + e^-$$
.

f) При поглощении молекулой H₂ фотона с энергией 21.2 эВ наряду с ионизацией происходит диссоциация и образуются два атома водорода в основном электронном состоянии:

$$H_2 \xrightarrow{21.2 \Im B} H(n=1) + H(n=1)$$

Два атома водорода разлетаются в противоположных направлениях с одинаковой скоростью u относительно точки распада. Рассчитайте скорость u (в м c^{-1}) одного атома водорода после диссоциации, считая что исходная молекула H_2 находилась в состоянии покоя.

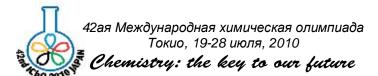
6 баллов

6a	6b	6c	6d	Очки
5	4	6	11	26

В этой задаче рассматриваются четыре изомерных органических соединения **A**, **B**, **C** и **D**. Все они имеют формулу $C_8H_{10}O$ и содержат бензольное кольцо. Ответьте на вопросы, которые следуют за описанием опытов. Если в качестве ответа подходят различные стереоизомеры, приведите структурные формулы их всех. Учтите, что за неправильные изомеры в листе ответов снимут баллы.

- (1) При комнатной температуре кусочки металлического натрия были внесены в пробирки, содержащие А, В и С. В случае жидких соединений кусочки натрия вносились непосредственно в исследуемый образец, а в случае твердых соединений в концентрированные растворы образцов в апротонном растворителе. Газообразный водород выделялся только в случае С.
- При добавлении водного раствора хлорида железа (III) к **C** и **D** не наблюдалось окрашивания в случае **C**, в то время как **D** окрасился.
- **А** подвергся окислению путем (2) добавления к нему водного раствора перманганата калия и нагревания реакционной смеси; после подкисления нагретой смеси из нее была выделена бензойная кислота.
- Допустим, что (3) любой из атомов водорода в бензольном кольце может быть замещен на атом хлора. При такой замене в случае В возможны четыре структурно различных монохлорпроизводных, а в случае D − только два структурно различных монохлорпроизводных.
- Каталитическое гидрирование бензольного кольца в С и D приводит к образованию насыщенного(ых) спирта(ов). Было установлено, что насыщенный(ые) спирт(ы), полученный(ые) из С, не содержит(ат) асимметрических атомов углерода, а полученный(ые) из D − содержат асимметрический(ие) атом(ы) углерода.
- а) <u>Изобразите</u> структурные формулы всех изомеров состава $C_8H_{10}O$, содержащих бензольное кольцо, для которых при обработке согласно подчеркнутой методике (1) НЕ будет наблюдаться выделения газообразного водорода.
- **b)** <u>Изобразите</u> структурные формулы всех изомеров состава $C_8H_{10}O$, содержащих бензольное кольцо, обработка которых согласно подчеркнутой методике (2) приведет к образованию бензойной кислоты.
- **c)** <u>Изобразите</u> структурные формулы всех изомеров состава $C_8H_{10}O$, содержащих бензольное кольцо, для которых возможны четыре различных монохлорзамещенных структурных изомера, образующихся согласно подчеркнутому преобразованию (3).
- **d)** <u>Изобразите</u> структурные формулы **A**, **B**, **C** и **D**. Если в качестве ответа подходят несколько изомеров, приведите структурные формулы их всех.

7 баллов


7a	7b	7c	7d	Очки
4	9	6	5	24

Рыба фугу – один из самых дорогих деликатесов в Японии. Однако во внутренностях рыбы содержится исключительно сильный яд тетродотоксин, в связи с чем употребление в пищу неправильно приготовленной рыбы может привести к летальному исходу. Тетродотоксин (1) исследуют с начала XX века, а в 1964 году была установлена его химическая структура.

Тетродотоксин (1)

а) Гуанидиновая группа в тетродотоксине проявляет сильные основные свойства. Ион гуанидиния, образующийся в результате протонирования гуанидиновой группы, стабилизирован из-за наличия резонансных структур. <u>Изобразите</u> в листе ответов две резонансные структуры **В** и **С**.

b) Для установления структуры тетродотоксина были получены его многочисленные производные. Обработка тетродотоксина (1) этанольным раствором гидроксида калия при нагревании привела к образованию хиназолинового производного 2, что позволило пролить свет на структуру основного скелета тетродотоксина. Механизм этой реакции таков. Сначала тетродотоксин гидролизуется с образованием карбоксилата 3. Далее под действием основания удаляется гидроксильная группа, обведенная в структурной формуле 3 на схеме, и образуется интермедиат D. Последующая ретроальдольная реакция приводит к разрыву углерод-углеродной связи в D и образованию интермедиатов E и F. Наконец, дегидратация вещества E с ароматизацией приводит к хиназолиновому производному 2. Изобразите в листе ответов структуры D, E и F.

$$H_2$$
 H_2 H_2 H_2 H_2 H_3 H_4 H_4 H_5 H_4 H_5 H_5 H_4 H_5 H_4 H_5 H_5 H_5 H_5 H_5 H_5 H_6 H_6 H_6 H_7 H_8 H_8

c) Пути биосинтеза тетродотоксина до сих пор не установлены. Тем не менее, было высказано предположение, что он синтезируется в организме из L-аргинина и изопентилпирофосфата. На структуре тетродотоксина в листе ответов <u>обведите кружочками все атомы углерода</u>, которые происходят из L-аргинина.

$$H_2$$
 H_2 H_2 H_2 H_2 H_3 H_4 H_4 H_5 H_5 H_5 H_6 H_6 H_6 H_7 H_8 H_8 H_8 H_8 H_8 H_9 H_9

d) Недавно был предложен альтернативный путь биосинтеза тетродотоксина. Согласно ему, конденсация между 2-дезокси-3-оксо-D-пентозой и гуанидином приводит к интермедиату **G** (молекулярная формула $C_6H_{11}N_3O_3$), в котором гуанидиниевый фрагмент является частью цикла. Взаимодействие **G** с изопентил-пирофосфатом приводит к образованию тетродотоксина в результате нескольких последовательных реакций. <u>Изобразите</u> структуру интермедиата **G** со стереохимической инфрмацией.

6 баллов

8a-1	8a-2	8a-3	8b-1	8b-2	Очки
2	4	3	4	7	20

Реакция этерификации, в которой участвуют бифункциональные молекулы, – один из видов поликонденсации. В этой реакции образуются линейные полимеры (см. уравнение (1)). Условия проведения реакции определяют *среднюю степень полимеризации*, X. (Учтите: в данном случае считают, что X = 2n)

Х и **n** – средние значения, и, следовательно, не обязаны быть целыми. Их следует записывать с некоторым числом знаков после запятой.

$$n \text{ HOOC-R}^1\text{-COOH} + n \text{ HO-R}^2\text{-OH} \rightarrow \text{HO-[COR}^1\text{CO-OR}^2\text{O]}_n\text{-H} + (2n-1)\text{H}_2\text{O} (1)$$

Значение **X** находят по убыли в ходе реакции количества функциональных групп (в данном случае – групп -COOH и -OH). Определим степень превращения **р** как

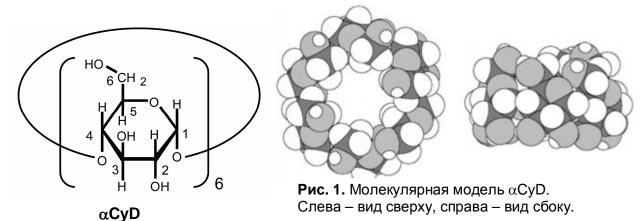
$$\mathbf{p} = (N_0 - N) / N_0,$$

где N_0 и N – общее число фунциональных групп до и после реакции, соответственно. Очевидно, что $\boldsymbol{p} \le 1$.

Для обозначения функциональных групп в молекулах дикарбоновой кислоты (**A**) и диола (**B**) введем индексы «_A» и «_B», соответственно. Это позволяет рассматривать такие величины, как N_{A0} , N_{B0} , N_A или N_B , причем $N_0 = N_{A0} + N_{B0}$, а $N = N_A + N_B$. Если начальные количества дикарбоновой кислоты и диола отличаются (для определенности будем считать, что $N_{A0} \le N_{B0}$), средняя степень полимеризации **X** связана с p_A и p_A уравнением (2):

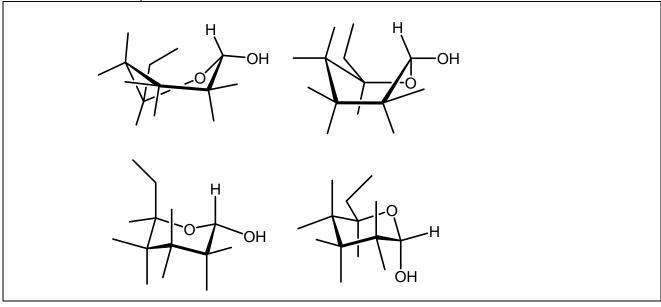
$$X = (1 + r) / (1 + r - 2p_A r)$$
 (2)
где $r = N_{A0} / N_{B0} \ (r \le 1)$
 $p_A = (N_{A0} - N_A) / N_{A0}$.

Если r = 1, то p_A совпадает с p_A а уравнение (2) преобразуется в обычное уравнение Карозерса.

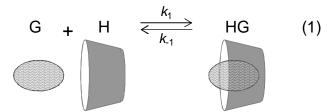

- а) Образец найлона-6,6 получили по реакции поликонденсации **равных** количеств адипиновой (гексан-1,6-диовой) кислоты и гексаметилендиамина (гексан-1,6-диамина).
 - а-1) **Нарисуйте** общую структурную формулу этого образца найлона-6,6, указав и концевые группы.

- а-2) Средняя молярная масса *М* этого образца найлона-6,6 равна 5507.25 г⋅моль⁻¹. <u>Рассчитайте</u> среднюю степень полимеризации *X* с двумя знаками после запятой.
- а-3) **Рассчитайте** (*с пятью знаками после запятой*) степень превращения p, необходимую для получения образца найлона-6,6 с M = 5507.25 г·моль⁻¹.
- b) Низкомолекулярный полиэфир (олигомер) получили из смеси 36.54 г адипиновой (гексан-1,6-диовой) кислоты и неизвестной массы [W, г] бутан-1,4-диола (Bdiol). В данном случае при $\textbf{p}_A \rightarrow 1$ образуется олигомер с X = 11.00, который содержит звенья Bdiol на обоих концах цепи.
 - b-1) **Нарисуйте** *точную* структурную формулу этого конкретного олигомера.
 - b-2) **Рассчитайте** с одним знаком после запятой неизвестную массу W (в г).

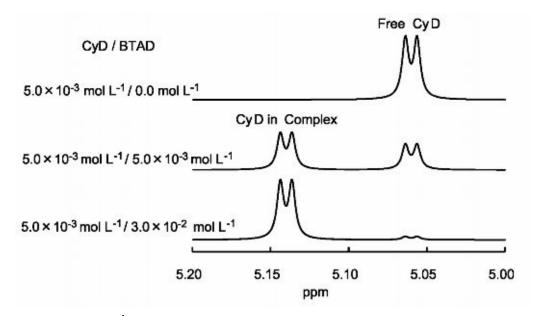
7 баллов


9a	9b	9с	9d	9e	9f	Очки
4	2	8	4	8	8	34

 α -циклодекстрин (α CyD) представляет собой циклический олигосахарид, состоящий из 6 α -D-глюкопиранозных остатков, связанных α (1 \rightarrow 4) гликозидными связями. Он может быть представлен в виде тора (рис. 1). α -D-глюкопиранозные остатки в α CyD обычно находятся в наиболее устойчивой конформации – кресла.



- **а)** Определите абсолютную конфигурацию (*R* или *S*) асимметрических атомов углерода C-2 и C-5 D-глюкозы. Нарисуйте структуру линейной формы D-глюкозы со стереохимической информацией.
- **b)** Выберите наиболее стабильную конформацию из четырех неполных формул α -D-глюкопиранозы, представленных ниже, а также в листах ответов.


На листе ответов <u>обведите</u> эту конформацию и <u>дорисуйте</u> на ней четыре ОН группы и четыре атома H так, чтобы получилась правильная формула α -D-глюкопиранозы.

 α CyD в водной среде способен взаимодействовать с гидрофобными молекулами по принципу хозяин/гость (H/G), выступая в роли хозяина (H). При соотношении H : G = 1:1 реакция внедрения может быть описана следующим равновесием.

где k_1 и k_{-1} – константы скорости прямой и обратной реакций, соответственно. Реакция комплексообразования молекулы гостя и циклодекстрина приводит к изменению химсдвига в спектре 1 H ЯМР. На рис. 2 показаны фрагменты 1 H ЯМР спектров (сигнал от атома H-1 α CyD), демонстрирующие изменение химсдвига в присутствии различных количеств дииодида 1,10-бис(триметиламмоний)декана (ВТАD). Дублет при 5.06 м.д. — это сигнал от H-1 свободного α CyD, а дублет при 5.14 м.д. — от H-1 комплекса α CyD с BTAD. (Учтите, что спектры на рис. 2 получены для систем в равновесном состоянии.)

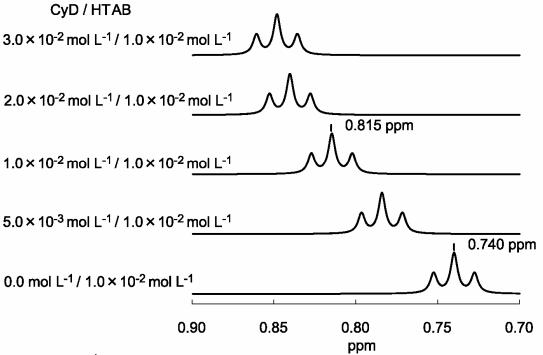


Рис. 2. Фрагменты 1 Н ЯМР спектров (сигналы от H-1 α CyD) растворов, содержащих 5.0×10⁻³ моль л⁻¹ α CyD и от 0 до 3.0 ×10⁻² моль л⁻¹ BTAD. *(ppm – это м.д.)*

c) В спектре раствора α CyD/BTAD с начальными концентрациями 5.0x10⁻³ моль π^{-1} / 5.0x10⁻³ моль π^{-1} , относительные площади дублетов 5.06 и 5.14 м.д. составляют 0.41 и 0.59, сответственно. Рассчитайте с точностью 2 значащие цифры концентрационную константу равновесия K реакции комплексообразования α CyD и BTAD.

Комплексообразование α CyD с бромидом гексаметиламмония (HTAB) проявляется в спектре 1 H ЯМР не так, как в случае комплексообразования α CyD/BTAD. На рис. 3 показаны фрагменты спектров 1 H ЯМР (сигнал от атома H-6 HTAB) в растворах α CyD/HTAB. В каждом спектре сигнал представляет собой один триплет (а не два), химсдвиг которого находится между химсдвигами свободного HTAB и комплекса α CyD/HTAB. При увеличении концентрации α CyD сигнал сдвигается пропорционально мольной доле комплекса. Сигналы от H-6 свободного HTAB и комплекса HTAB с α CyD представляют собой триплеты при 0.740 м.д. и 0.860 м.д., соответственно.

$$H_3C$$
 R^+
 H_3C
 $R^ H_3C$
 R^+
 H_3C
 $R^ H_3C$
 H_3C
 H_3C

Рис. 3. Фрагменты ¹Н ЯМР спектров (сигнал от H-6 в HTAB) в растворах, содержащих 1.0×10^{-2} моль π^{-1} HTAB и от 0 до 3.0×10^{-2} моль π^{-1} α CyD. (ppm – это м.д.)

d) Сигнал HTAB в растворе α CyD/HTAB представляет собой один триплет, положение которого зависит от концентрации α CyD. Выберите разумное(ые) объяснение(ия) этому явлению.

Подсказка: Если молекула гостя быстро и многократно входит и выходит из α CyD, то наблюдается только один сигнал молекулы гостя, причем хим-сдвиг этого сигнала равен среднему взвешенному химсдвигов сигналов комплекса и свободного гостя.

- а. k_1 для α CyD/HTAB > k_1 для α CyD/BTAD
- b. k_1 для α CyD/HTAB < k_1 для α CyD/BTAD
- с. K для α CyD/HTAB > K для α CyD/BTAD
- d. Kдля α CyD/HTAB < Kдля α CyD/BTAD
- **e)** Сигнал HTAB в растворе α CyD/HTAB с начальными концентрациями α CyD 1.0 x10⁻² моль л⁻¹ и HTAB 1.0 x 10⁻² моль л⁻¹ находится при 0.815 м.д. <u>Рассчитайте</u> с точностью 2 значащие цифры концентрационную константу равновесия K реакции комплексообразования α CyD и HTAB.
- f) Концентрационная константа комплексообразования K для α CyD/HTAB при 40.0 °C и 60.0 °C равна 3.12×10^2 и 2.09×10^2 , соответственно. <u>Рассчитайте</u> с точностью 2 значащие цифры стандартное изменение энтальпии ΔH^0 (в кДж/моль) и энтропии, ΔS^0 (в Дж/(моль K)) в этой реакции. (Температурной зависимостью ΔH^0 и ΔS^0 пренебречь.)