Задача 31. Идентификация алкина

Оптически активный алкин **A** содержит 89.5% C и 10.4% H. После гидрирования на Pd/C катализаторе он превращается в 1-метил-4-пропилциклогексан. Когда соединение **A** реагирует с CH_3MgBr , газ не выделяется. Гидрирование **A** на катализаторе Линдлера с последующим озонолизом и реакцией с $KMnO_4$ дает продукт **B**, в ^{13}C -ЯМР спектре которого есть пик при 207 м.д. При реакции продукта **B** с $I_2/NaOH$ образуется желтый осадок, который отфильтровывают. Подкисление фильтрата ведет к получению оптически активного продукта **C**, в ^{13}C -ЯМР спектре которого нет ни одного пика выше 175 м.д. Определите структуры **A**, **B** и **C**.

Задача 32. Липазы

Липазы — это ферменты, гидролизующие сложноэфирные связи в триацилглицеринах, а протеазы гидролизуют амидные связи в белках и пептидах. Соединения, тормозящие гидролиз триацилглицеринов и пептидов, полезны при лечении различных заболеваний.

Механизм действия указанных ферментов начинается с атаки сложноэфирной или амидной связи гидроксильной группой серина.

Один из подходов к созданию ингибиторов сериновых протеаз состоит в замещении разрываемой амидной связи активированной карбонильной группой. Вследствие этого гидроксил серина реагирует с активированным карбонилом, образуя устойчивый ацил-ферментный аддукт, который далее гидролизу не подвергается.

32-1. Расположите перечисленные карбонильные группы в порядке уменьшения реакционной способности по отношению к гидроксильной группе серина:

32-2. Тетрагидролипстатин — мощный ингибитор пищеварительных липаз (используется при лечении ожирения). Укажите стрелкой карбонильную группу тетрагидролипстатина, которая подвергается атаке активным центром серина, входящего в состав липаз:

32-3. Сложные эфиры и амиды можно гидролизовать в кислой или щелочной среде. Расположите эти соединения в порядке уменьшения реакционной способности по отношению к иону OH^- в водном растворе.